Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Computer Engineering

Scheduling For A Small Satellite For Remote Sensed Data Collection, Donovan Torgerson, Christoffer Korvalnd, Jeremy Straub, Ronald Marsh Dec 2013

Scheduling For A Small Satellite For Remote Sensed Data Collection, Donovan Torgerson, Christoffer Korvalnd, Jeremy Straub, Ronald Marsh

Jeremy Straub

Small satellites, such as CubeSats, serve as excellent platforms for the collection of data that can be supplied to a geographic information system. To serve this need, they require a robust and lightweight task scheduler due to their limited onboard power production capabilities as well as internal space restrictions. Because of these constraints, schedules must be optimized; however, the scheduling optimization process must be performed using limited processing (CPU) power.

Several considerations must be taken into account in order to make a scheduler for these systems. This poster highlights requirements such as inter-dependency of onboard systems, and limited windows of …


Characterization Of Extended And Simplified Intelligent Water Drop (Siwd) Approaches And Their Comparison To The Intelligent Water Drop (Iwd) Approach, Jeremy Straub, Eunjin Kim Nov 2013

Characterization Of Extended And Simplified Intelligent Water Drop (Siwd) Approaches And Their Comparison To The Intelligent Water Drop (Iwd) Approach, Jeremy Straub, Eunjin Kim

Jeremy Straub

This paper presents a simplified approach to performing the Intelligent Water Drops (IWD) process. This approach is designed to be comparatively lightweight while approximating the results of the full IWD process. The Simplified Intelligent Water Drops (SIWD) approach is specifically designed for applications where IWD must be run in a computationally limited environment (such as on a robot, UAV or small spacecraft) or where performance speed must be maximized for time sensitive applications. The SWID approach is described and compared and contracted to the base IWD approach.


The Multi-Tier Mission Architecture And A Different Approach To Entry, Descent And Landing, Jeremy Straub Jun 2013

The Multi-Tier Mission Architecture And A Different Approach To Entry, Descent And Landing, Jeremy Straub

Jeremy Straub

Planetary missions are generally very well planned out. Where the spacecraft will be deployed, what it will do there and in what order are generally determined before launch. While some allowance is made for greater depth exploration of scientifically interesting items identified during the investigation, a successful mission is (generally) one that doesn’t deviate significantly from its planning. When sending an initial mission to an unsurveyed planet or moon, however, this approach is not suitable. Current space technology provides the capability to send a combined survey and lander mission (instead of conducting an initial survey mission and following it up …


Enabling Interplanetary Small Spacecraft Science Missions With Model Based Data Analysis, Jeremy Straub Jun 2013

Enabling Interplanetary Small Spacecraft Science Missions With Model Based Data Analysis, Jeremy Straub

Jeremy Straub

Small spacecraft operating outside of Earth orbit are significantly constrained by the communica- tions link available to them. This is particularly true for stand-alone craft that must rely on their own antenna and transmission systems (for which gain and available power generation are limited by form factor); it is also applicable to ‘hitchhiker’-style missions which may be able to utilize (quite likely very limited amounts of) time on the primary spacecraft’s communications equip- ment for long-haul transmission.

This poster presents the adaptation of the Model-Based Transmission Reduction (MBTR) frame- work’s Model-Based Data Analysis (MBDA) component for use on an interplanetary …


Desktop Warfare: Robotic Collaboration For Persistent Surveillance, Situational Awareness And Combat Operations, Jeremy Straub May 2013

Desktop Warfare: Robotic Collaboration For Persistent Surveillance, Situational Awareness And Combat Operations, Jeremy Straub

Jeremy Straub

Robotic sensing and weapons platforms can be controlled from a desktop workstation on the other side of the planet from where combat is occurring. This minimizes the potential for injury to soldiers and increases operational productivity. Significant work has been undertaken and is ongoing related to the autonomous control of battlefield sensing and warfighting systems. While many aspects of these operations can be performed autonomously, in some cases it is necessary (due to technical limitations) or desirable (due to legal or political implications) to involve humans in the low-level decision making. This paper reviews a number of specific applications where …


Spatial Computing In An Orbital Environment: An Exploration Of The Unique Constraints Of This Special Case To Other Spatial Computing Environments, Jeremy Straub May 2013

Spatial Computing In An Orbital Environment: An Exploration Of The Unique Constraints Of This Special Case To Other Spatial Computing Environments, Jeremy Straub

Jeremy Straub

The creation of an orbital services model (where spacecraft expose their capabilities for use by other spacecraft as part of a service-for-hire or barter system) requires effective determination of how to best transmit information between the two collaborating spacecraft. Existing approaches developed for ad hoc networking (e.g., wireless networks with users entering and departing in a pseudo-random fashion) exist; however, these fail to generate optimal solutions as they ignore a critical piece of available information. This additional piece of information is the orbital characteristics of the spacecraft. A spacecraft’s orbit is nearly deterministic if the magnitude and direction of its …


An Expert System For Spacecraft Design, Jeremy Straub, Christoffer Korvald, Tyler Hill, Joshua Berk Apr 2013

An Expert System For Spacecraft Design, Jeremy Straub, Christoffer Korvald, Tyler Hill, Joshua Berk

Jeremy Straub

Designing a spacecraft is a complicated process that can be problem-prone. This is particularly true in the case of a small spacecraft where volume and mass limitations are enforced by form factor requirements. The Open Prototype for Educational NanoSats implements several restrictions beyond those from the CubeSat form factor, including two different board size specifications which impact the configuration of the payload area support structure and the size of available batteries.

OpenEdge aims to avoid the discovery of form factor, OPEN-specific and other configuration issues during final assembly by checking prospective configurations against the applicable requirements and constraints set during …


A Human Proximity Operations System Test Case Validation Approach, Justin Huber, Jeremy Straub Mar 2013

A Human Proximity Operations System Test Case Validation Approach, Justin Huber, Jeremy Straub

Jeremy Straub

A Human Proximity Operations System (HPOS) poses numerous risks in a real world environment. These risks range from mundane tasks such as avoiding walls and fixed obstacles to the critical need to keep people and processes safe in the context of the HPOS’s situation-specific decision making. Validating the performance of an HPOS, which must operate in a real-world environment, is an ill posed problem due to the complexity that is introduced by erratic (non-computer) actors. In order to prove the HPOS’s usefulness, test cases must be generated to simulate possible actions of these actors, so the HPOS can be shown …