Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Computer Engineering

Pandaa: Physical Arrangement Detection Of Networked Devices Through Ambient-Sound Awareness, Zheng Sun, Aveek Purohit, Kaifei Chen, Shijia Pan, Trevor Pering, Pei Zhang Sep 2011

Pandaa: Physical Arrangement Detection Of Networked Devices Through Ambient-Sound Awareness, Zheng Sun, Aveek Purohit, Kaifei Chen, Shijia Pan, Trevor Pering, Pei Zhang

Zheng Sun

Future ubiquitous home environments can contain 10s or 100s of devices. Ubiquitous services running on these devices (i.e. localizing users, routing, security algorithms) will commonly require an accurate location of each device. In order to obtain these locations, existing techniques require either a manual survey, active sound sources, or estimation using wireless radios. These techniques, however, need additional hardware capabilities and are intrusive to the user. Non-intrusive, automatic localization of ubiquitous computing devices in the home has the potential to greatly facilitate device deployments.

This paper presents the PANDAA system, a zero-configuration spatial localization system for networked devices based on …


Pandaa: Physical Arrangement Detection Of Networked Devices Through Ambient-Sound Awareness, Zheng Sun, Aveek Purohit, Kaifei Chen, Shijia Pan, Trevor Pering, Pei Zhang Sep 2011

Pandaa: Physical Arrangement Detection Of Networked Devices Through Ambient-Sound Awareness, Zheng Sun, Aveek Purohit, Kaifei Chen, Shijia Pan, Trevor Pering, Pei Zhang

Aveek Purohit

Future ubiquitous home environments can contain 10s or 100s of devices. Ubiquitous services running on these devices (i.e. localizing users, routing, security algorithms) will commonly require an accurate location of each device. In order to obtain these locations, existing techniques require either a manual survey, active sound sources, or estimation using wireless radios. These techniques, however, need additional hardware capabilities and are intrusive to the user. Non-intrusive, automatic localization of ubiquitous computing devices in the home has the potential to greatly facilitate device deployments.

This paper presents the PANDAA system, a zero-configuration spatial localization system for networked devices based on …


Pandaa: A Physical Arrangement Detection Technique For Networked Devices Through Ambient-Sound Awareness, Zheng Sun, Aveek Purohit, Philippe De Wagter, Irina Brinster, Chorom Hamm, Pei Zhang Aug 2011

Pandaa: A Physical Arrangement Detection Technique For Networked Devices Through Ambient-Sound Awareness, Zheng Sun, Aveek Purohit, Philippe De Wagter, Irina Brinster, Chorom Hamm, Pei Zhang

Zheng Sun

This demo presents PANDAA, a zero-configuration automatic spatial localization technique for networked devices based on ambient sound sensing. We will demonstrate that after initial placement of the devices, ambient sounds, such as human speech, music, footsteps, finger snaps, hand claps, or coughs and sneezes, can be used to autonomously resolve the spatial relative arrangement of devices, such as mobile phones, using trigonometric bounds and successive approximation.


Coughloc: Location-Aware Indoor Acoustic Sensing For Non-Intrusive Cough Detection, Zheng Sun, Aveek Purohit, Kathleen Yang, Neha Pattan, Dan Siewiorek, Asim Smailagic, Ian Lane, Pei Zhang Jun 2011

Coughloc: Location-Aware Indoor Acoustic Sensing For Non-Intrusive Cough Detection, Zheng Sun, Aveek Purohit, Kathleen Yang, Neha Pattan, Dan Siewiorek, Asim Smailagic, Ian Lane, Pei Zhang

Zheng Sun

Pervasive medical monitoring has become an ideal alter- native to nursing care for elderly people and patients in hospitals. Existing systems using single body-worn sensors are often intrusive and less reliable. By contrast, ubiqui- tous acoustic sensing techniques can support non-intrusive and robust medical monitoring. In this paper, we describe CoughLoc, a ubiquitous acoustic sensing system for con- tinuous cough detection using a wireless sensor network. We show how knowledge of sound source locations can be leveraged to improve the detection accuracy of sound events caused by mobile users. Experiments in indoor environ- ments show our system achieves over 90% …


Coughloc: Location-Aware Indoor Acoustic Sensing For Non-Intrusive Cough Detection, Zheng Sun, Aveek Purohit, Kathleen Yang, Neha Pattan, Dan Siewiorek, Asim Smailagic, Ian Lane, Pei Zhang Apr 2011

Coughloc: Location-Aware Indoor Acoustic Sensing For Non-Intrusive Cough Detection, Zheng Sun, Aveek Purohit, Kathleen Yang, Neha Pattan, Dan Siewiorek, Asim Smailagic, Ian Lane, Pei Zhang

Aveek Purohit

Pervasive medical monitoring has become an ideal alter- native to nursing care for elderly people and patients in hospitals. Existing systems using single body-worn sensors are often intrusive and less reliable. By contrast, ubiqui- tous acoustic sensing techniques can support non-intrusive and robust medical monitoring. In this paper, we describe CoughLoc, a ubiquitous acoustic sensing system for con- tinuous cough detection using a wireless sensor network. We show how knowledge of sound source locations can be leveraged to improve the detection accuracy of sound events caused by mobile users. Experiments in indoor environ- ments show our system achieves over 90% …


Sensorfly: Controlled-Mobile Sensing Platform For Indoor Emergency Response Applications, Aveek Purohit, Zheng Sun, Frank Mokaya, Pei Zhang Apr 2011

Sensorfly: Controlled-Mobile Sensing Platform For Indoor Emergency Response Applications, Aveek Purohit, Zheng Sun, Frank Mokaya, Pei Zhang

Aveek Purohit

Indoor emergency response situations, such as urban fire, are characterized by dangerous constantly-changing operating environments with little access to situational information for first responders. In-situ information about the conditions, such as the extent and evolution of an indoor fire, can augment rescue efforts and reduce risk to emergency personnel. Static sensor networks that are pre-deployed or manually deployed have been proposed, but are less practical due to need for large infrastructure, lack of adaptivity and limited coverage. Controlled-mobility in sensor networks, i.e. the capability of nodes to move as per network needs can provide the desired autonomy to overcome these …


Sensorfly: Controlled-Mobile Sensing Platform For Indoor Emergency Response Applications, Aveek Purohit, Zheng Sun, Frank Mokaya, Pei Zhang Apr 2011

Sensorfly: Controlled-Mobile Sensing Platform For Indoor Emergency Response Applications, Aveek Purohit, Zheng Sun, Frank Mokaya, Pei Zhang

Zheng Sun

Indoor emergency response situations, such as urban fire, are characterized by dangerous constantly-changing operating environments with little access to situational information for first responders. In-situ information about the conditions, such as the extent and evolution of an indoor fire, can augment rescue efforts and reduce risk to emergency personnel. Static sensor networks that are pre-deployed or manually deployed have been proposed, but are less practical due to need for large infrastructure, lack of adaptivity and limited coverage. Controlled-mobility in sensor networks, i.e. the capability of nodes to move as per network needs can provide the desired autonomy to overcome these …


Cortina: Collaborative Context-Aware Indoor Positioning Employing Rss And Rtof Techniques, Zheng Sun, Richard Farley, Telis Kaleas, Judy Ellis, Kiran Chikkappa Mar 2011

Cortina: Collaborative Context-Aware Indoor Positioning Employing Rss And Rtof Techniques, Zheng Sun, Richard Farley, Telis Kaleas, Judy Ellis, Kiran Chikkappa

Zheng Sun

Cortina is an energy-efficient indoor localization system, which leverages a wireless sensor network to support navigation and tracking applications. To improve the localization performance, we develop a hybrid ranging system, which incor- porate both RSS and RToF-based techniques. To overcome effects from indoor multipath, we design and implement algorithms to take account various context information. We evaluated the system over a 2000m2 area instrumented with twenty-six fixed nodes. Evaluation results show the system achieved 2.5m accuracy in a pedestrian tracking application.


Adaptive Discrete-Time Controller Design With Neural Network For Hypersonic Flight Vehicle Via Back-Stepping, Bin Xu Jan 2011

Adaptive Discrete-Time Controller Design With Neural Network For Hypersonic Flight Vehicle Via Back-Stepping, Bin Xu

Bin Xu

In this article, the adaptive neural controller in discrete time is investigated for the longitudinal dynamics of a generic hypersonic flight vehicle. The dynamics are decomposed into the altitude subsystem and the velocity subsystem. The altitude subsystem is transformed into the strict-feedback form from which the discrete-time model is derived by the first-order Taylor expansion. The virtual control is designed with nominal feedback and neural network (NN) approximation via back-stepping. Meanwhile, one adaptive NN controller is designed for the velocity subsystem. To avoid the circular construction problem in the practical control, the design of coefficients adopts the upper bound instead …


Adaptive Neural Control Based On Hgo For Hypersonic Flight Vehicles, Bin Xu Jan 2011

Adaptive Neural Control Based On Hgo For Hypersonic Flight Vehicles, Bin Xu

Bin Xu

This paper describes the design of adaptive neural controller for the longitudinal dynamics of a generic hypersonic flight vehicle (HFV) which are decomposed into two functional systems, namely the altitude subsystem and the velocity subsystem. For each subsystem, one adaptive neural controller is investigated based on the normal output-feedback formulation. For the altitude subsystem, the high gain observer (HGO) is taken to estimate the unknown newly defined states. Only one neural network (NN) is employed to approximate the lumped uncertain system nonlinearity during the controller design which is considerably simpler than the ones based on back-stepping scheme with the strict-feedback …


Task Allocation For Multi-Spacecraft Cooperation Based On Estimation Of Distribution Algorithm, Bin Xu Jan 2011

Task Allocation For Multi-Spacecraft Cooperation Based On Estimation Of Distribution Algorithm, Bin Xu

Bin Xu

One two-stage task allocation strategy is proposed for multi-spacecraft cooperation during the long-range orbit transfer with two impulses. This paper focuses on the task value maximum and cost minimum optimization by assigning spacecraft to different task. At the first stage time and energy cost are considered based on the spacecraft dynamics. The optimization result is together with the target value as the factor for the task allocation model at the second stage. The optimization is processed separately in continuous and discrete time domain with estimation of distribution algorithm (EDA). Different task allocation mode is formulated and the strategy is verified …


Composite Control Based On Optimal Torque Control And Adaptive Kriging Control For The Crab Rover, Bin Xu Jan 2011

Composite Control Based On Optimal Torque Control And Adaptive Kriging Control For The Crab Rover, Bin Xu

Bin Xu

Terrainability is mostly dependant on the suspension mechanism and the control of a space rover. For the six wheeled CRAB rover, this paper presents the composite control design with torque control and adaptive Kriging control to improve the terrainability, somewhat related to minimizing heel slip. As CRAB is moving slowly, the torque control is processed by minimizing the variance of the required friction coefficient based on the static model. Adaptive Kriging control is used to track the commanded velocity. The system uncertainty is compensated by Kriging estimation based on the velocity dynamics. Experiment results with two different tires show the …


Adaptive Hypersonic Flight Control Via Back-Stepping And Kriging Estimation, Bin Xu Jan 2011

Adaptive Hypersonic Flight Control Via Back-Stepping And Kriging Estimation, Bin Xu

Bin Xu

This paper investigates the adaptive Kriging controller for the longitudinal dynamics of a generic hypersonic flight vehicle (HFV). For the altitude subsystem, the dynamics are transformed into the strict-feedback form where the backstepping scheme is employed. Considering the nonlinearity of the dynamics, the nominal feedback is included in the controller while Kriging system is designed to estimate the uncertainty. With the proposed controller, the almost surely bounded stability is guaranteed. The simulation study is presented to show the effectiveness of the proposed control approach.