Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Faculty Research and Publications

Electrodes

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Computer Engineering

Electrostrictive Polymers For Mechanical-To-Electrical Energy Harvesting, William G. Kaval, Ronald A. Coutu Jr., Robert A. Lake Jul 2016

Electrostrictive Polymers For Mechanical-To-Electrical Energy Harvesting, William G. Kaval, Ronald A. Coutu Jr., Robert A. Lake

Electrical and Computer Engineering Faculty Research and Publications

Research of electrostrictive polymers has generated new opportunities for harvesting energy from the surrounding environment and converting it into usable electrical energy. Piezoelectric ceramic based devices have long been used in energy harvesting for converting mechanical motion to electrical energy. Nevertheless, those materials tend to be unsuitable for low-frequency mechanical excitations such as human movement. Since organic polymers are typically softer and more flexible, the translated electrical energy output is considerably higher under the same mechanical force. Currently, investigations in using electroactive polymers for energy harvesting, and mechanical-to-electrical energy conversion, are beginning to show potential for this application. In this …


6.4 Ghz Acoustic Sensor For In-Situ Monitoring Of Afm Tip Wear, T.J. Cheng, Jun Hyun Han, Michael Ziwisky, Chung-Hoon Lee, S.A. Bhave Jan 2011

6.4 Ghz Acoustic Sensor For In-Situ Monitoring Of Afm Tip Wear, T.J. Cheng, Jun Hyun Han, Michael Ziwisky, Chung-Hoon Lee, S.A. Bhave

Electrical and Computer Engineering Faculty Research and Publications

This paper demonstrates an acoustic sensor that can resolve atomic force microscopy (AFM) tip blunting with a frequency sensitivity of 0.007%. The AFM tip is fabricated on a thin film piezoelectric aluminum nitride (AlN) membrane that is excited as a film bulk acoustic resonator (FBAR). We demonstrate that cutting 0.98 μm off of the tip apex results in a resonance frequency change of 0.4MHz at 6.387GHz. This work demonstrates the potential for in-situ monitoring of AFM tip wear.