Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Computer Engineering

Machine Learning For Intrusion Detection Into Unmanned Aerial System 6g Networks, Faisal Alrefaei May 2024

Machine Learning For Intrusion Detection Into Unmanned Aerial System 6g Networks, Faisal Alrefaei

Doctoral Dissertations and Master's Theses

Progress in the development of wireless network technology has played a crucial role in the evolution of societies and provided remarkable services over the past decades. It remotely offers the ability to execute critical missions and effective services that meet the user's needs. This advanced technology integrates cyber and physical layers to form cyber-physical systems (CPS), such as the Unmanned Aerial System (UAS), which consists of an Unmanned Aerial Vehicle (UAV), ground network infrastructure, communication link, etc. Furthermore, it plays a crucial role in connecting objects to create and develop the Internet of Things (IoT) technology. Therefore, the emergence of …


State Omniscience For Cooperative Local Catalog Maintenance Of Close Proximity Satellite Systems, Chris Hays Apr 2024

State Omniscience For Cooperative Local Catalog Maintenance Of Close Proximity Satellite Systems, Chris Hays

Doctoral Dissertations and Master's Theses

Resiliency in multi-agent system navigation is reliant on the inherent ability of the system to withstand, overcome, or recover from adverse conditions and disturbances. In large part, resiliency is achieved through reducing the impact of critical failure points to the success and/or performance of the system. In this view, decentralized multi-agent architectures have become an attractive solution for multi-agent navigation, but decentralized architectures place the burden of information acquisition directly on the agents themselves. In fact, the design of distributed estimators has been a growing interest to enable complex multi-sensor/multi-agent tasks. In such scenarios, it is important that each local …


Implementation Of Path Planning Methods To Detect And Avoid Gps Signal Degradation In Urban Environments, Ayush Raminedi Apr 2024

Implementation Of Path Planning Methods To Detect And Avoid Gps Signal Degradation In Urban Environments, Ayush Raminedi

Doctoral Dissertations and Master's Theses

In the modern world, various missions are being carried out under the assistance of autonomous flight vehicles due to their ability to operate in a wide range of flight conditions. Regardless, these autonomous vehicles are prone to GPS signal loss in urban environments due to obstructions that cause scintillation, multi-path, and shadowing. These effects that decrease the GPS functionality can deteriorate the accuracy of GPS positioning causing losses in signal tracking leading to a decrease in navigation performance. These effects are modeled into the simulation environment and are used as part of the path planning algorithm to provide better navigation …


Immersive Framework For Designing Trajectories Using Augmented Reality, Joseph Anderson, Leo Materne, Karis Cooks, Michelle Aros, Jaia Huggins, Jesika Geliga-Torres, Kamden Kuykendall, David Canales, Barbara Chaparro Jan 2024

Immersive Framework For Designing Trajectories Using Augmented Reality, Joseph Anderson, Leo Materne, Karis Cooks, Michelle Aros, Jaia Huggins, Jesika Geliga-Torres, Kamden Kuykendall, David Canales, Barbara Chaparro

Publications

The intuitive interaction capabilities of augmented reality make it ideal for solving complex 3D problems that require complex spatial representations, which is key for astrodynamics and space mission planning. By implementing common and complex orbital mechanics algorithms in augmented reality, a hands-on method for designing orbit solutions and spacecraft missions is created. This effort explores the aforementioned implementation with the Microsoft Hololens 2 as well as its applications in industry and academia. Furthermore, a human-centered design process and study are utilized to ensure the tool is user-friendly while maintaining accuracy and applicability to higher-fidelity problems.