Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Computer Engineering

Convolutional Neural Networks For Crystal Material Property Prediction Using Hybrid Orbital-Field Matrix And Magpie Descriptors, Zhuo Cao, Yabo Dan, Zheng Xiong, Chengcheng Niu, Xiang Li, Songrong Qian, Jianjun Hu Apr 2019

Convolutional Neural Networks For Crystal Material Property Prediction Using Hybrid Orbital-Field Matrix And Magpie Descriptors, Zhuo Cao, Yabo Dan, Zheng Xiong, Chengcheng Niu, Xiang Li, Songrong Qian, Jianjun Hu

Faculty Publications

Computational prediction of crystal materials properties can help to do large-scale in-silicon screening. Recent studies of material informatics have focused on expert design of multi-dimensional interpretable material descriptors/features. However, successes of deep learning such as Convolutional Neural Networks (CNN) in image recognition and speech recognition have demonstrated their automated feature extraction capability to effectively capture the characteristics of the data and achieve superior prediction performance. Here, we propose CNN-OFM-Magpie, a CNN model with OFM (Orbital-field Matrix) and Magpie descriptors to predict the formation energy of 4030 crystal material by exploiting the complementarity of two-dimensional OFM features and Magpie features. Experiments …


Convolutional Neural Networks For Crystal Material Property Prediction Using Hybrid Orbital-Field Matrix And Magpie Descriptors, Zhuo Cao, Yabo Dan, Zheng Xiong, Chengcheng Niu, Xiang Li, Songrong Qian, Jianjun Hu Apr 2019

Convolutional Neural Networks For Crystal Material Property Prediction Using Hybrid Orbital-Field Matrix And Magpie Descriptors, Zhuo Cao, Yabo Dan, Zheng Xiong, Chengcheng Niu, Xiang Li, Songrong Qian, Jianjun Hu

Faculty Publications

Computational prediction of crystal materials properties can help to do large-scale in-silicon screening. Recent studies of material informatics have focused on expert design of multi-dimensional interpretable material descriptors/features. However, successes of deep learning such as Convolutional Neural Networks (CNN) in image recognition and speech recognition have demonstrated their automated feature extraction capability to effectively capture the characteristics of the data and achieve superior prediction performance. Here, we propose CNN-OFM-Magpie, a CNN model with OFM (Orbital-field Matrix) and Magpie descriptors to predict the formation energy of 4030 crystal material by exploiting the complementarity of two-dimensional OFM features and Magpie features. Experiments …


Combined Feature Compression Encoding In Image Retrieval, Lu Huo, Leijie Zhang Jan 2019

Combined Feature Compression Encoding In Image Retrieval, Lu Huo, Leijie Zhang

Turkish Journal of Electrical Engineering and Computer Sciences

Recently, features extracted by convolutional neural networks (CNNs) are popularly used for image retrieval. In CNN representation, high-level features are usually chosen to represent the images in coarse-grained datasets, while mid-level features are successfully applied to describe the images for fine-grained datasets. In this paper, we combine these different levels of features as a joint feature to propose a robust representation that is suitable for both coarse-grained and fine-grained image retrieval datasets. In addition, in order to solve the problem that the efficiency of image retrieval is influenced by the dimensionality of indexing, a unified subspace learning model named spectral …


Spatial-Aware Global Contrast Representation For Saliency Detection, Dan Xu, Shucheng Huang, Xin Zuo Jan 2019

Spatial-Aware Global Contrast Representation For Saliency Detection, Dan Xu, Shucheng Huang, Xin Zuo

Turkish Journal of Electrical Engineering and Computer Sciences

Deep learning networks have been demonstrated to be helpful when used in salient object detection and achieved superior performance than the methods that are based on low-level hand-crafted features. In this paper, we propose a novel spatial-aware contrast cube-based convolution neural network (CNN) which can further improve the detection performance. From this cube data structure, the contrast of the superpixel is extracted. Meanwhile, the spatial information is preserved during the transformation. The proposed method has two advantages compared to the existing deep learning-based saliency methods. First, instead of feeding the deep learning networks with raw image patches or pixels, we …


Plant Disease And Pest Detection Using Deep Learning-Based Features, Muammer Türkoğlu, Davut Hanbay Jan 2019

Plant Disease And Pest Detection Using Deep Learning-Based Features, Muammer Türkoğlu, Davut Hanbay

Turkish Journal of Electrical Engineering and Computer Sciences

The timely and accurate diagnosis of plant diseases plays an important role in preventing the loss of productivity and loss or reduced quantity of agricultural products. In order to solve such problems, methods based on machine learning can be used. In recent years, deep learning, which is especially widely used in image processing, offers many new applications related to precision agriculture. In this study, we evaluated the performance results using different approaches of nine powerful architectures of deep neural networks for plant disease detection. Transfer learning and deep feature extraction methods are used, which adapt these deep learning models to …


Elimination Of Useless Images From Raw Camera-Trap Data, Ulaş Tekeli̇, Yalin Baştanlar Jan 2019

Elimination Of Useless Images From Raw Camera-Trap Data, Ulaş Tekeli̇, Yalin Baştanlar

Turkish Journal of Electrical Engineering and Computer Sciences

Camera-traps are motion triggered cameras that are used to observe animals in nature. The number of images collected from camera-traps has increased significantly with the widening use of camera-traps thanks to advances in digital technology. A great workload is required for wild-life researchers to group and label these images. We propose a system to decrease the amount of time spent by the researchers by eliminating useless images from raw camera-trap data. These images are too bright, too dark, blurred, or they contain no animals. To eliminate bright, dark, and blurred images we employ techniques based on image histograms and fast …