Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Computer Engineering

Electroosmotic Mixing Of Non-Newtonian Fluid In A Microchannel With Obstacles And Zeta Potential Heterogeneity, Lanju Mei, Defu Cui, Jiayue Shen, Diganta Dutta, Willie Brown, Lei Zhang, Ibibia K. Dabipi Jan 2021

Electroosmotic Mixing Of Non-Newtonian Fluid In A Microchannel With Obstacles And Zeta Potential Heterogeneity, Lanju Mei, Defu Cui, Jiayue Shen, Diganta Dutta, Willie Brown, Lei Zhang, Ibibia K. Dabipi

Computational Modeling & Simulation Engineering Faculty Publications

This paper investigates the electroosmotic micromixing of non-Newtonian fluid in a microchannel with wall-mounted obstacles and surface potential heterogeneity on the obstacle surface. In the numerical simulation, the full model consisting of the Navier–Stokes equations and the Poisson–Nernst–Plank equations are solved for the electroosmotic fluid field, ion transport, and electric field, and the power law model is used to characterize the rheological behavior of the aqueous solution. The mixing performance is investigated under different parameters, such as electric double layer thickness, flow behavior index, obstacle surface zeta potential, obstacle dimension. Due to the zeta potential heterogeneity at the obstacle surface, …


Energy-Efficient Computational Chemistry: Comparison Of X86 And Arm Systems, Kristopher Keipert, Gaurav Mitra, Vaibhav Sunriyal, Sarom S. Leang, Masha Sosonkina, Alistair P. Rendell, Mark S. Gordon Nov 2015

Energy-Efficient Computational Chemistry: Comparison Of X86 And Arm Systems, Kristopher Keipert, Gaurav Mitra, Vaibhav Sunriyal, Sarom S. Leang, Masha Sosonkina, Alistair P. Rendell, Mark S. Gordon

Computational Modeling & Simulation Engineering Faculty Publications

The computational efficiency and energy-to-solution of several applications using the GAMESS quantum chemistry suite of codes is evaluated for 32-bit and 64-bit ARM-based computers, and compared to an x86 machine. The x86 system completes all benchmark computations more quickly than either ARM system and is the best choice to minimize time to solution. The ARM64 and ARM32 computational performances are similar to each other for Hartree-Fock and density functional theory energy calculations. However, for memory-intensive second-order perturbation theory energy and gradient computations the lower ARM32 read/write memory bandwidth results in computation times as much as 86% longer than on the …