Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Computer Engineering

Generalization And Parallelization Of Messy Genetic Algorithms And Communication In Parallel Genetic Algorithms., Laurence D. Merkle Dec 1992

Generalization And Parallelization Of Messy Genetic Algorithms And Communication In Parallel Genetic Algorithms., Laurence D. Merkle

Theses and Dissertations

Genetic algorithms (GA) are highly parallelizable, robust semi- optimization algorithms of polynomial complexity. The most commonly implemented GAs are 'simple' GAs (SGAs). Reproduction, crossover, and mutation operate on solution populations. Deceptive and GA-hard problems are provably difficult for simple GAs. Messy GAs (MGA) are designed to overcome these limitations. The MGA is generalized to solve permutation type optimization problems. Its performance is compared to another MGA's, an SGA's, and a permutation SGA's. Against a fully deceptive problem the generalized MGA (GMGA) consistently performs better than the simple GA. Against an NP-complete permutation problem, the GMGA performs better than the other …


Packet Routing In Networks With Long Wires, Ronald I. Greenberg, H.-C. Oh Oct 1992

Packet Routing In Networks With Long Wires, Ronald I. Greenberg, H.-C. Oh

Computer Science: Faculty Publications and Other Works

In this paper, we examine the packet routing problem for networks with wires of differing length. We consider this problem in a network independent context, in which routing time is expressed in terms of “congestion” and “dilation” measures for a set of packet paths. We give, for any constant ε > 0, a randomized on-line algorithm for routing any set of N packets in O((Clg^ε(Nd)+Dlg(Nd))/lglg(Nd)) time, where C is the maximum congestion and D is the length of the longest path, both taking wire delays into account, and d is the longest path in terms of number of wires. We also …