Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Computer Engineering

Improve The Prototype Of Low-Cost Near-Infrared Diffuse Optical Imaging System, Chen Xu, Mohammed Z. Shakil Dec 2020

Improve The Prototype Of Low-Cost Near-Infrared Diffuse Optical Imaging System, Chen Xu, Mohammed Z. Shakil

Publications and Research

Diffuse Optical Tomography (DOT) and Optical Spectroscopy using near-infrared (NIR) diffused light has demonstrated great potential for the initial diagnosis of tumors and in the assessment of tumor vasculature response to neoadjuvant chemotherapy. The aims of this project are 1) to test the different types of LEDs in the near-infrared range, and design the driving circuit, and test the modulation of LEDs at different frequencies; 2) to test the APDs as a detector, and build the receiver system and compare efficiency with pre-built systems. In this project, we are focusing on creating a low-cost infrared transmission system for tumor and …


Programmable Time-Domain Digital-Coding Metasurface For Non-Linear Harmonic Manipulation And New Wireless Communication Systems, Jie Zhao, Xi Yang, Jun Yan Dai, Qiang Cheng, Xiang Li, Ning Hua Qi, Jun Chen Ke, Guo Dong Bai, Shuo Liu, Shi Jin, Andrea Alù, Tie Jun Cui Nov 2018

Programmable Time-Domain Digital-Coding Metasurface For Non-Linear Harmonic Manipulation And New Wireless Communication Systems, Jie Zhao, Xi Yang, Jun Yan Dai, Qiang Cheng, Xiang Li, Ning Hua Qi, Jun Chen Ke, Guo Dong Bai, Shuo Liu, Shi Jin, Andrea Alù, Tie Jun Cui

Publications and Research

Optical non-linear phenomena are typically observed in natural materials interacting with light at high intensities, and they benefit a diverse range of applications from communication to sensing. However, controlling harmonic conversion with high efficiency and flexibility remains a major issue in modern optical and radio-frequency systems. Here, we introduce a dynamic time-domain digital-coding metasurface that enables efficient manipulation of spectral harmonic distribution. By dynamically modulating the local phase of the surface reflectivity, we achieve accurate control of different harmonics in a highly programmable and dynamic fashion, enabling unusual responses, such as velocity illusion. As a relevant application, we propose and …