Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Computer Engineering

Deep Learning Using Vision And Lidar For Global Robot Localization, Brett E. Gowling May 2024

Deep Learning Using Vision And Lidar For Global Robot Localization, Brett E. Gowling

Master's Theses

As the field of mobile robotics rapidly expands, precise understanding of a robot’s position and orientation becomes critical for autonomous navigation and efficient task performance. In this thesis, we present a snapshot-based global localization machine learning model for a mobile robot, the e-puck, in a simulated environment. Our model uses multimodal data to predict both position and orientation using the robot’s on-board cameras and LiDAR sensor. In an effort to minimize localization error, we explore different sensor configurations by varying the number of cameras and LiDAR layers used. Additionally, we investigate the performance benefits of different multimodal fusion strategies while …


Implementation Of Adas And Autonomy On Unlv Campus, Zillur Rahman Dec 2023

Implementation Of Adas And Autonomy On Unlv Campus, Zillur Rahman

UNLV Theses, Dissertations, Professional Papers, and Capstones

The integration of Advanced Driving Assistance Systems (ADAS) and autonomous driving functionalities into contemporary vehicles has notably surged, driven by the remarkable progress in artificial intelligence (AI). These AI systems, capable of learning from real-world data, now exhibit the capability to perceive their surroundings via a suite of sensors, create optimal routes from source to destination, and execute vehicle control akin to a human driver.

Within the context of this thesis, we undertake a comprehensive exploration of three distinct yet interrelated ADAS and Autonomy projects. Our central objective is the implementation of autonomous driving(AD) technology at UNLV campus, culminating in …


Robot Learning To Pour Solid Objects Accurately, Juan Wilches, Yu Sun May 2023

Robot Learning To Pour Solid Objects Accurately, Juan Wilches, Yu Sun

36th Florida Conference on Recent Advances in Robotics

Pouring is an efficient way to transfer objects from
one container to another. This abstract summarizes a method
to accurately pour solid objects, such as ice cubes. It leverages
visual and proprioceptive feedback together with contextual
information to control the forward and backward rotation of the
pouring container. These feedback signals are fed to a recurrent
neural network that produces the control signal. The proposed
approach can achieve a human-like pouring accuracy in both a
simulation and a real setup.


Chatgpt As Metamorphosis Designer For The Future Of Artificial Intelligence (Ai): A Conceptual Investigation, Amarjit Kumar Singh (Library Assistant), Dr. Pankaj Mathur (Deputy Librarian) Mar 2023

Chatgpt As Metamorphosis Designer For The Future Of Artificial Intelligence (Ai): A Conceptual Investigation, Amarjit Kumar Singh (Library Assistant), Dr. Pankaj Mathur (Deputy Librarian)

Library Philosophy and Practice (e-journal)

Abstract

Purpose: The purpose of this research paper is to explore ChatGPT’s potential as an innovative designer tool for the future development of artificial intelligence. Specifically, this conceptual investigation aims to analyze ChatGPT’s capabilities as a tool for designing and developing near about human intelligent systems for futuristic used and developed in the field of Artificial Intelligence (AI). Also with the helps of this paper, researchers are analyzed the strengths and weaknesses of ChatGPT as a tool, and identify possible areas for improvement in its development and implementation. This investigation focused on the various features and functions of ChatGPT that …


Intelligent Autonomous Inspections Using Deep Learning And Detection Markers, Alejandro Martinez Acosta Dec 2022

Intelligent Autonomous Inspections Using Deep Learning And Detection Markers, Alejandro Martinez Acosta

Open Access Theses & Dissertations

Inspection of industrial and scientific facilities is a crucial task that must be performed regularly. These inspections tasks ensure that the facilityâ??s structure is in safe operational conditions for humans. Furthermore,the safe operation of industrial machinery, is dependent on the conditions of the environment. For safety reasons, inspections for both structural integrity and equipment is often manually performed by operators or technicians. Naturally, this is often a tedious and laborious task. Additionally, buildings and structures frequently contain hard to reach or dangerous areas, which leads to the harm, injury or death of humans. Autonomous robotic systems offer an attractive solution …


Panodepth – Panoramic Monocular Depth Perception Model And Framework, Adley K. Wong Dec 2022

Panodepth – Panoramic Monocular Depth Perception Model And Framework, Adley K. Wong

Master's Theses

Depth perception has become a heavily researched area as companies and researchers are striving towards the development of self-driving cars. Self-driving cars rely on perceiving the surrounding area, which heavily depends on technology capable of providing the system with depth perception capabilities. In this paper, we explore developing a single camera (monocular) depth prediction model that is trained on panoramic depth images. Our model makes novel use of transfer learning efficient encoder models, pre-training on a larger dataset of flat depth images, and optimizing the model for use with a Jetson Nano. Additionally, we present a training and optimization framework …


Multimodal Adversarial Learning, Uche Osahor Jan 2022

Multimodal Adversarial Learning, Uche Osahor

Graduate Theses, Dissertations, and Problem Reports

Deep Convolutional Neural Networks (DCNN) have proven to be an exceptional tool for object recognition, generative modelling, and multi-modal learning in various computer vision applications. However, recent findings have shown that such state-of-the-art models can be easily deceived by inserting slight imperceptible perturbations to key pixels in the input. A good target detection systems can accurately identify targets by localizing their coordinates on the input image of interest. This is ideally achieved by labeling each pixel in an image as a background or a potential target pixel. However, prior research still confirms that such state of the art targets models …


Design Of Plastic Contaminant Eliminator In Seed Cotton, Joshua H. Tandio Dec 2021

Design Of Plastic Contaminant Eliminator In Seed Cotton, Joshua H. Tandio

Theses and Dissertations

Plastic contamination in cotton is a problem in cotton industry and researchers have worked on this problem with different approaches. This thesis documents the design of mechanical and electronic real-time systems for detecting and removing plastic contaminants. The mechanical system was designed to expose plastic embedded inside the seed cotton to the sensor and to separate plastic contaminated cotton from the process stream. The detection system consisted of an embedded computer interfaced with a USB camera and Neural Network (NN) software running in it. Two NN models were tested, a transfer learning model and a built-from-scratch original model. The original …


Learning State-Dependent Sensor Measurement Models To Improve Robot Localization Accuracy, Troi André Williams Nov 2021

Learning State-Dependent Sensor Measurement Models To Improve Robot Localization Accuracy, Troi André Williams

USF Tampa Graduate Theses and Dissertations

This dissertation proposes a novel method called state-dependent sensor measurement models (SDSMMs). Such models dynamically predict the state-dependent bias and uncertainty of sensor measurements, ultimately improving fundamental robot tasks such as localization. In our first investigation, we introduced the state-dependent sensor measurement model framework, described their properties, stated the input and output of these models, and described how to train them. We also explained how to integrate such models with an Extended Kalman Filter and a Particle Filter, two popular robot state estimation algorithms. We validated the proposed framework through a series of localization tasks. The results showed that our …


Efficient End-To-End Autonomous Driving, Hesham Eraqi Dec 2020

Efficient End-To-End Autonomous Driving, Hesham Eraqi

Theses and Dissertations

Steering a car through traffic is a complex task that is difficult to cast into algorithms. Therefore, researchers turn to train artificial neural networks from front-facing camera data stream along with the associated steering angles. Nevertheless, most existing solutions consider only the visual camera frames as input, thus ignoring the temporal relationship between frames. In this work, we propose a Convolution Long Short-Term Memory Recurrent Neural Network (C-LSTM), which is end-to-end trainable, to learn both visual and dynamic temporal dependencies of driving. Additionally, We introduce posing the steering angle regression problem as classification while imposing a spatial relationship between the …


A Deep Learning Approach For Motion Segment Estimation For Pipe Leak Detection Robot, Cihan Uyanik, Erdem Erdemir, Erkan Kaplanoglu, Ali Sekmen Oct 2019

A Deep Learning Approach For Motion Segment Estimation For Pipe Leak Detection Robot, Cihan Uyanik, Erdem Erdemir, Erkan Kaplanoglu, Ali Sekmen

Computer Science Faculty Research

The trajectory motion of a robot can be a valuable information to estimate the localization of an autonomous robotic system, especially in a very dynamic but structurally-known environments like water pipes where the sensor readings are not reliable. The main focus of this research is to estimate the location of meso-scale robots using a deep-learning-based motion trajectory segment detection system from recorded sensory measurements while the robot travels through a pipe system. The idea is based on the classification of the motion measurements, acquired by inertial measurement unit (IMU), by exploiting the deep learning approach. Proposed idea and utilized methodology …