Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Computer Engineering

Assessment Of Simulated And Real-World Autonomy Performance With Small-Scale Unmanned Ground Vehicles, William Peyton Johnson Dec 2022

Assessment Of Simulated And Real-World Autonomy Performance With Small-Scale Unmanned Ground Vehicles, William Peyton Johnson

Theses and Dissertations

Off-road autonomy is a challenging topic that requires robust systems to both understand and navigate complex environments. While on-road autonomy has seen a major expansion in recent years in the consumer space, off-road systems are mostly relegated to niche applications. However, these applications can provide safety and navigation to dangerous areas that are the most suited for autonomy tasks. Traversability analysis is at the core of many of the algorithms employed in these topics. In this thesis, a Clearpath Robotics Jackal vehicle is equipped with a 3D Ouster laser scanner to define and traverse off-road environments. The Mississippi State University …


A Monte Carlo Framework For Incremental Improvement Of Simulation Fidelity, Damian M. Lyons, James Finocchiaro, Misha Novitzky, Chris Korpela Jul 2022

A Monte Carlo Framework For Incremental Improvement Of Simulation Fidelity, Damian M. Lyons, James Finocchiaro, Misha Novitzky, Chris Korpela

Faculty Publications

Robot software developed in simulation often does not be- have as expected when deployed because the simulation does not sufficiently represent reality - this is sometimes called the `reality gap' problem. We propose a novel algorithm to address the reality gap by injecting real-world experience into the simulation. It is assumed that the robot program (control policy) is developed using simulation, but subsequently deployed on a real system, and that the program includes a performance objective monitor procedure with scalar output. The proposed approach collects simulation and real world observations and builds conditional probability functions. These are used to generate …


A Monte Carlo Framework For Incremental Improvement Of Simulation Fidelity, Damian Lyons, James Finocchiaro, Misha Novitsky, Chris Korpela Jul 2022

A Monte Carlo Framework For Incremental Improvement Of Simulation Fidelity, Damian Lyons, James Finocchiaro, Misha Novitsky, Chris Korpela

Faculty Publications

Robot software developed in simulation often does not be- have as expected when deployed because the simulation does not sufficiently represent reality - this is sometimes called the `reality gap' problem. We propose a novel algorithm to address the reality gap by injecting real-world experience into the simulation. It is assumed that the robot program (control policy) is developed using simulation, but subsequently deployed on a real system, and that the program includes a performance objective monitor procedure with scalar output. The proposed approach collects simulation and real world observations and builds conditional probability functions. These are used to generate …


Therapeutic Mechanical Horse, Cade M. Liberty, Aleya Dolorfino, Peter Philips, Zuzanna Dominik, Luke Watts Jun 2022

Therapeutic Mechanical Horse, Cade M. Liberty, Aleya Dolorfino, Peter Philips, Zuzanna Dominik, Luke Watts

Mechanical Engineering

Jack's Helping Hand and its hippotherapy participants required a device to serve as an alternative to a live horseback riding experience that could also increase the range of riders. This would provide more clients with equine-assisted therapy that has proven to better the lives of people with both physical and mental disabilities. Horses can be unpredictable, tall, and sometimes anxiety-inducing, especially for new riders. Our group’s aim was to develop a mechanical horse that will be able to reduce these issues for equine therapy centers and the riders they help. When a rider gets to practice sitting on the horse …


Off Road Autonomous Vehicle Modeling And Repeatability Using Real World Telemetry Via Simulation, Matthew Paul Spencer Jan 2022

Off Road Autonomous Vehicle Modeling And Repeatability Using Real World Telemetry Via Simulation, Matthew Paul Spencer

Dissertations, Master's Theses and Master's Reports

One approach to autonomous control of high mobility ground vehicle platforms operating on challenging terrain is with the use of predictive simulation. Using a simulated or virtual world, an autonomous system can optimize use of its control systems by predicting interaction between the vehicle and ground as well as the vehicle actuator state. Such a simulation allows the platform to assess multiple possible scenarios before attempting to execute a path. Physically realistic simulations covering all of these domains are currently computationally expensive, and are unable to provide fast execution times when assessing each individual scenario due to the use of …