Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Computer Engineering

Learning State-Dependent Sensor Measurement Models To Improve Robot Localization Accuracy, Troi André Williams Nov 2021

Learning State-Dependent Sensor Measurement Models To Improve Robot Localization Accuracy, Troi André Williams

USF Tampa Graduate Theses and Dissertations

This dissertation proposes a novel method called state-dependent sensor measurement models (SDSMMs). Such models dynamically predict the state-dependent bias and uncertainty of sensor measurements, ultimately improving fundamental robot tasks such as localization. In our first investigation, we introduced the state-dependent sensor measurement model framework, described their properties, stated the input and output of these models, and described how to train them. We also explained how to integrate such models with an Extended Kalman Filter and a Particle Filter, two popular robot state estimation algorithms. We validated the proposed framework through a series of localization tasks. The results showed that our …


Planr.: Planar Learning Autonomous Navigation Robot, Gabrielle S. Santamorena, Daniel Kasman, Jesus Mercado, Ben Klave, Andrew Weisman, Anthony Fortner Jun 2019

Planr.: Planar Learning Autonomous Navigation Robot, Gabrielle S. Santamorena, Daniel Kasman, Jesus Mercado, Ben Klave, Andrew Weisman, Anthony Fortner

Computer Engineering

PLANR is a self-contained robot capable of mapping a space and generating 2D floor plans of a building while identifying objects of interest. It runs Robot Operating System (ROS) and houses four main hardware components. An Arduino Mega board handles the navigation, while an NVIDIA Jetson TX2, holds most of the processing power and runs ROS. An Orbbec Astra Pro stereoscopic camera is used for recognition of doors, windows and outlets and the RPLiDAR A3 laser scanner is able to give depth for wall detection and dimension measurements. The robot is intended to operate autonomously and without constant human monitoring …


Towards Autonomous Localization Of An Underwater Drone, Nathan Sfard Jun 2018

Towards Autonomous Localization Of An Underwater Drone, Nathan Sfard

Master's Theses

Autonomous vehicle navigation is a complex and challenging task. Land and aerial vehicles often use highly accurate GPS sensors to localize themselves in their environments. These sensors are ineffective in underwater environments due to signal attenuation. Autonomous underwater vehicles utilize one or more of the following approaches for successful localization and navigation: inertial/dead-reckoning, acoustic signals, and geophysical data. This thesis examines autonomous localization in a simulated environment for an OpenROV Underwater Drone using a Kalman Filter. This filter performs state estimation for a dead reckoning system exhibiting an additive error in location measurements. We evaluate the accuracy of this Kalman …