Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Computer Engineering

Body And Tail Coordination In The Bluespot Salamander (Ambystoma Laterale) During Limb Regeneration, Cassandra M. Donatelli, Keegan Lutek, Keshav Gupta, Emily M. Standen May 2021

Body And Tail Coordination In The Bluespot Salamander (Ambystoma Laterale) During Limb Regeneration, Cassandra M. Donatelli, Keegan Lutek, Keshav Gupta, Emily M. Standen

Engineering Faculty Articles and Research

Animals are incredibly good at adapting to changes in their environment, a trait envied by most roboticists. Many animals use different gaits to seamlessly transition between land and water and move through non-uniform terrains. In addition to adjusting to changes in their environment, animals can adjust their locomotion to deal with missing or regenerating limbs. Salamanders are an amphibious group of animals that can regenerate limbs, tails, and even parts of the spinal cord in some species. After the loss of a limb, the salamander successfully adjusts to constantly changing morphology as it regenerates the missing part. This quality is …


Prototype Of A Fish Inspired Swimming Silk Robot, Cassandra M. Donatelli, Sarah A. Bradner, Juanita Mathews, Erin Sanders, Casey R. Culligan, David Kaplan, Eric D. Tytell Jul 2018

Prototype Of A Fish Inspired Swimming Silk Robot, Cassandra M. Donatelli, Sarah A. Bradner, Juanita Mathews, Erin Sanders, Casey R. Culligan, David Kaplan, Eric D. Tytell

Engineering Faculty Articles and Research

Elongate fishes have evolved hundreds of times throughout the tree of life. They occupy many aquatic environments, from streams and ponds to the deepest parts of the ocean. Due to their long body and numerous vertebrae, they are also highly flexible animals, which makes them useful as bioinspiration for designs in the field of soft robotics. We present a biodegradable soft robot prototype, inspired by elongate fishes. The robot's body is primarily composed of a silk hydrogel with embedded fibers to mimic the structure of natural fish skin. When actuated at the front, the flexible gel prototype mimics the undulatory …


Soft Foam Robot With Caterpillar-Inspired Gait Regimes For Terrestrial Locomotion, Cassandra M. Donatelli, Zachary T. Serlin, Piers Echols-Jones, Anthony E. Scibelli, Alexandra Cohen, Jeanne-Marie Musca, Shane Rozen-Levy, David Buckingham, Robert White, Barry A. Trimmer Dec 2017

Soft Foam Robot With Caterpillar-Inspired Gait Regimes For Terrestrial Locomotion, Cassandra M. Donatelli, Zachary T. Serlin, Piers Echols-Jones, Anthony E. Scibelli, Alexandra Cohen, Jeanne-Marie Musca, Shane Rozen-Levy, David Buckingham, Robert White, Barry A. Trimmer

Engineering Faculty Articles and Research

Caterpillars are the soft bodied larvae of lepidopteran insects. They have evolved to occupy an extremely diverse range of natural environments and to locomote in complex three-dimensional structures without articulated joint or hydrostatic control. These animals make excellent bio-inspiration for the field of soft robotics because of their diversity and adaptability. In this paper, we present SquMA Bot, a caterpillar-inspired soft robot. The robot's body is primarily composed of a soft viscoelastic foam, and it is actuated using a motor-tendon system. SquMA Bot is able to mimic the inching gait of a caterpillar and can use its flexible body to …