Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Computer Engineering

Chaotic Phase-Coded Waveforms With Space-Time Complementary Coding For Mimo Radar Applications, Sheng Hong, Fuhui Zhou, Yantao Dong, Zhixin Zhao, Yuhao Wang, Maosong Yan Jul 2018

Chaotic Phase-Coded Waveforms With Space-Time Complementary Coding For Mimo Radar Applications, Sheng Hong, Fuhui Zhou, Yantao Dong, Zhixin Zhao, Yuhao Wang, Maosong Yan

Electrical and Computer Engineering Faculty Publications

A framework for designing orthogonal chaotic phase-coded waveforms with space-time complementary coding (STCC) is proposed for multiple-input multiple-output (MIMO) radar applications. The phase-coded waveform set to be transmitted is generated with an arbitrary family size and an arbitrary code length by using chaotic sequences. Due to the properties of chaos, this chaotic waveform set has many advantages in performance, such as anti-interference and low probability of intercept. However, it cannot be directly exploited due to the high range sidelobes, mutual interferences, and Doppler intolerance. In order to widely implement it in practice, we optimize the chaotic phase-coded waveform set from …


A Video Encoder Design Combining Edge-Adaptive Lifting And Scalable Block-Matching With Motion Compensation, Sedat Telçeken, Ömer Nezi̇h Gerek Jan 2012

A Video Encoder Design Combining Edge-Adaptive Lifting And Scalable Block-Matching With Motion Compensation, Sedat Telçeken, Ömer Nezi̇h Gerek

Turkish Journal of Electrical Engineering and Computer Sciences

This study aimed to achieve video compression by using a novel lifting-based hybrid encoder that also uses motion compensation. The proposed encoder separates video frames into temporal groups, within which certain frames are selected for producing temporal and spatial predictions over the rest of the frames. The predictions utilize spatiotemporal lifting together with motion compensation. The combination of spatial information with temporal changes is inspired from the idea of edge-adaptive lifting, which alters prediction directions in images. A further incorporation of well-known block-matching methods with different levels was observed to improve the performance. To provide the first compression results, unpredicted …