Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Chapman University

Feedback control

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Computer Engineering

Towards Qos-Based Embedded Machine Learning, Tom Springer, Erik Linstead, Peiyi Zhao, Chelsea Parlett-Pelleriti Oct 2022

Towards Qos-Based Embedded Machine Learning, Tom Springer, Erik Linstead, Peiyi Zhao, Chelsea Parlett-Pelleriti

Engineering Faculty Articles and Research

Due to various breakthroughs and advancements in machine learning and computer architectures, machine learning models are beginning to proliferate through embedded platforms. Some of these machine learning models cover a range of applications including computer vision, speech recognition, healthcare efficiency, industrial IoT, robotics and many more. However, there is a critical limitation in implementing ML algorithms efficiently on embedded platforms: the computational and memory expense of many machine learning models can make them unsuitable in resource-constrained environments. Therefore, to efficiently implement these memory-intensive and computationally expensive algorithms in an embedded computing environment, innovative resource management techniques are required at the …


On-Device Deep Learning Inference For System-On-Chip (Soc) Architectures, Tom Springer, Elia Eiroa-Lledo, Elizabeth Stevens, Erik Linstead Mar 2021

On-Device Deep Learning Inference For System-On-Chip (Soc) Architectures, Tom Springer, Elia Eiroa-Lledo, Elizabeth Stevens, Erik Linstead

Engineering Faculty Articles and Research

As machine learning becomes ubiquitous, the need to deploy models on real-time, embedded systems will become increasingly critical. This is especially true for deep learning solutions, whose large models pose interesting challenges for target architectures at the “edge” that are resource-constrained. The realization of machine learning, and deep learning, is being driven by the availability of specialized hardware, such as system-on-chip solutions, which provide some alleviation of constraints. Equally important, however, are the operating systems that run on this hardware, and specifically the ability to leverage commercial real-time operating systems which, unlike general purpose operating systems such as Linux, can …