Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Computer Engineering

Toward Intuitive 3d Interactions In Virtual Reality: A Deep Learning- Based Dual-Hand Gesture Recognition Approach, Trudi Di Qi, Franceli L. Cibrian, Meghna Raswan, Tyler Kay, Hector M. Camarillo-Abad, Yuxin Wen May 2024

Toward Intuitive 3d Interactions In Virtual Reality: A Deep Learning- Based Dual-Hand Gesture Recognition Approach, Trudi Di Qi, Franceli L. Cibrian, Meghna Raswan, Tyler Kay, Hector M. Camarillo-Abad, Yuxin Wen

Engineering Faculty Articles and Research

Dual-hand gesture recognition is crucial for intuitive 3D interactions in virtual reality (VR), allowing the user to interact with virtual objects naturally through gestures using both handheld controllers. While deep learning and sensor-based technology have proven effective in recognizing single-hand gestures for 3D interactions, research on dual-hand gesture recognition for VR interactions is still underexplored. In this work, we introduce CWT-CNN-TCN, a novel deep learning model that combines a 2D Convolution Neural Network (CNN) with Continuous Wavelet Transformation (CWT) and a Temporal Convolution Network (TCN). This model can simultaneously extract features from the time-frequency domain and capture long-term dependencies using …


Vr Circuit Simulation With Advanced Visualization For Enhancing Comprehension In Electrical Engineering, Elliott Wolbach May 2024

Vr Circuit Simulation With Advanced Visualization For Enhancing Comprehension In Electrical Engineering, Elliott Wolbach

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

As technology advances, the field of electrical and computer engineering continuously demands innovative tools and methodologies to facilitate effective learning and comprehension of fundamental concepts. Through a comprehensive literature review, it was discovered that there was a gap in the current research on using VR technology to effectively visualize and comprehend non-observable electrical characteristics of electronic circuits. This thesis explores the integration of Virtual Reality (VR) technology and real-time electronic circuit simulation with enhanced visualization of non-observable concepts such as voltage distribution and current flow within these circuits. The primary objective is to develop an immersive educational platform that makes …


Bidding Strategy For A Wind Power Producer In Us Energy And Reserve Markets, Anne Stratman May 2024

Bidding Strategy For A Wind Power Producer In Us Energy And Reserve Markets, Anne Stratman

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Wind power is one of the world's fastest-growing renewable energy resources and has expanded quickly within the US electric grid. Currently, wind power producers (WPPs) may sell energy products in US markets but are not allowed to sell reserve products, due to the uncertain and intermittent nature of wind power. However, as wind’s share of the power supply grows, it may eventually be necessary for WPPs to contribute to system-wide reserves. This paper proposes a stochastic optimization model to determine the optimal offer strategy for a WPP that participates in the day-ahead and real-time energy and spinning reserve markets. The …


An Investigation Of Information Structures In Dna, Joel Mohrmann May 2024

An Investigation Of Information Structures In Dna, Joel Mohrmann

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

The information-containing nature of the DNA molecule has been long known and observed. One technique for quantifying the relationships existing within the information contained in DNA sequences is an entity from information theory known as the average mutual information (AMI) profile. This investigation sought to use principally the AMI profile along with a few other metrics to explore the structure of the information contained in DNA sequences.

Treating DNA sequences as an information source, several computational methods were employed to model their information structure. Maximum likelihood and maximum a posteriori estimators were used to predict missing bases in DNA sequences. …


Design And Optimization Of A Novel Monolithic Spring For High-Frequency Press-Pack Sic Fet Modules, Bogac Canbaz May 2024

Design And Optimization Of A Novel Monolithic Spring For High-Frequency Press-Pack Sic Fet Modules, Bogac Canbaz

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Silicon Carbide (SiC) Field-Effect Transistor (FET) modules lead the way in power electronics, being superior in efficiency and robustness for high-frequency applications. The shift towards SiC from traditional silicon (Si)-based devices is driven by its superior thermal conductivity, higher electric field strength, and operational efficiency at elevated temperatures. These features are critical for the development of next-generation, grid-oriented power converters aimed at enhancing the reliability and sustainability of power systems. This research focuses on high-frequency press-pack (HFPP) SiC FET modules, addressing the primary challenge of miniaturizing SiC FET dies without compromising performance, through an innovative press-contact design essential for increased …


Exponential Fusion Of Interpolated Frames Network (Efif-Net): Advancing Multi-Frame Image Super-Resolution With Convolutional Neural Networks, Hamed Elwarfalli, Dylan Flaute, Russell C. Hardie Jan 2024

Exponential Fusion Of Interpolated Frames Network (Efif-Net): Advancing Multi-Frame Image Super-Resolution With Convolutional Neural Networks, Hamed Elwarfalli, Dylan Flaute, Russell C. Hardie

Electrical and Computer Engineering Faculty Publications

Convolutional neural networks (CNNs) have become instrumental in advancing multi-frame image super-resolution (SR), a technique that merges multiple low-resolution images of the same scene into a high-resolution image. In this paper, a novel deep learning multi-frame SR algorithm is introduced. The proposed CNN model, named Exponential Fusion of Interpolated Frames Network (EFIF-Net), seamlessly integrates fusion and restoration within an end-to-end network. Key features of the new EFIF-Net include a custom exponentially weighted fusion (EWF) layer for image fusion and a modification of the Residual Channel Attention Network for restoration to deblur the fused image. Input frames are registered with subpixel …


Dynamic Modeling And Control Of A Solid State Semiconductor-Based Transformer, Microgrid And Storage Systems, Rubén Darío Viñán-Velasco Jan 2024

Dynamic Modeling And Control Of A Solid State Semiconductor-Based Transformer, Microgrid And Storage Systems, Rubén Darío Viñán-Velasco

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Smart Grids are power grid models designed with the idea of including the growing new technologies, from generation to storage devices, and are a response to the growing demands from consumers and the presence of electronic components being commonplace in the modern devices. The design requires a dynamic alternative in order to build an independent grid that can also work in cooperation with other micro-grids and the power grid in an integrated way. Smart-grids present several advantages over the traditional power grid scheme, but the economic costs of the components required to implement smart-grids is currently a great limitation. This …


Intelligent Millimeter-Wave System For Human Activity Monitoring For Telemedicine, Abdullah K. Alhazmi, Mubarak A. Alanazi, Awwad H. Alshehry, Saleh M. Alshahry, Jennifer Jaszek, Cameron Djukic, Anna Brown, Kurt Jackson, Vamsy P. Chodavarapu Jan 2024

Intelligent Millimeter-Wave System For Human Activity Monitoring For Telemedicine, Abdullah K. Alhazmi, Mubarak A. Alanazi, Awwad H. Alshehry, Saleh M. Alshahry, Jennifer Jaszek, Cameron Djukic, Anna Brown, Kurt Jackson, Vamsy P. Chodavarapu

Electrical and Computer Engineering Faculty Publications

Telemedicine has the potential to improve access and delivery of healthcare to diverse and aging populations. Recent advances in technology allow for remote monitoring of physiological measures such as heart rate, oxygen saturation, blood glucose, and blood pressure. However, the ability to accurately detect falls and monitor physical activity remotely without invading privacy or remembering to wear a costly device remains an ongoing concern. Our proposed system utilizes a millimeter-wave (mmwave) radar sensor (IWR6843ISK-ODS) connected to an NVIDIA Jetson Nano board for continuous monitoring of human activity. We developed a PointNet neural network for real-time human activity monitoring that can …