Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Computer Engineering

The Integration Of Neuromorphic Computing In Autonomous Robotic Systems, Md Abu Bakr Siddique Jan 2024

The Integration Of Neuromorphic Computing In Autonomous Robotic Systems, Md Abu Bakr Siddique

Dissertations, Master's Theses and Master's Reports

Deep Neural Networks (DNNs) have come a long way in many cognitive tasks by training on large, labeled datasets. However, this method has problems in places with limited data and energy, like when planetary robots are used or when edge computing is used [1]. In contrast to this data-heavy approach, animals demonstrate an innate ability to learn by communicating with their environment and forming associative memories among events and entities, a process known as associative learning [2-4]. For instance, rats in a T-maze learn to associate different stimuli with outcomes through exploration without needing labeled data [5]. This learning paradigm …


Evaluation Of Lidar Uncertainty And Applications Towards Slam In Off-Road Environments, Zachary D. Jeffries Jan 2023

Evaluation Of Lidar Uncertainty And Applications Towards Slam In Off-Road Environments, Zachary D. Jeffries

Dissertations, Master's Theses and Master's Reports

Safe and robust operation of autonomous ground vehicles in all types of conditions and environment necessitates complex perception systems and unique, innovative solutions. This work addresses automotive lidar and maximizing the performance of a simultaneous localization and mapping stack. An exploratory experiment and an open benchmarking experiment are both presented. Additionally, a popular SLAM application is extended to use the type of information gained from lidar characterization, demonstrating the performance gains and necessity to tightly couple perception software and sensor hardware. The first exploratory experiment collects data from child-sized, low-reflectance targets over a range from 15 m to 35 m. …


Neuromorphic Computing Applications In Robotics, Noah Zins Jan 2023

Neuromorphic Computing Applications In Robotics, Noah Zins

Dissertations, Master's Theses and Master's Reports

Deep learning achieves remarkable success through training using massively labeled datasets. However, the high demands on the datasets impede the feasibility of deep learning in edge computing scenarios and suffer from the data scarcity issue. Rather than relying on labeled data, animals learn by interacting with their surroundings and memorizing the relationships between events and objects. This learning paradigm is referred to as associative learning. The successful implementation of associative learning imitates self-learning schemes analogous to animals which resolve the challenges of deep learning. Current state-of-the-art implementations of associative memory are limited to simulations with small-scale and offline paradigms. Thus, …


Adapting Deep Learning For Underwater Acoustic Communication Channel Modeling, Li Wei Jan 2022

Adapting Deep Learning For Underwater Acoustic Communication Channel Modeling, Li Wei

Dissertations, Master's Theses and Master's Reports

The recent emerging applications of novel underwater systems lead to increasing demand for underwater acoustic (UWA) communication and networking techniques. However, due to the challenging UWA channel characteristics, conventional wireless techniques are rarely applicable to UWA communication and networking. The cognitive and software-defined communication and networking are considered promising architecture of a novel UWA system design. As an essential component of a cognitive communication system, the modeling and prediction of the UWA channel impulse response (CIR) with deep generative models are studied in this work.

Firstly, an underwater acoustic communication and networking testbed is developed for conducting various simulations and …


An Experimental Study Towards Underwater Propulsion System Using Structure Borne Traveling Waves, Shreyas Suhas Gadekar Jan 2022

An Experimental Study Towards Underwater Propulsion System Using Structure Borne Traveling Waves, Shreyas Suhas Gadekar

Dissertations, Master's Theses and Master's Reports

The method of generating steady-state structure-borne traveling waves underwater in an infinite media creates abundant opportunities in the field of propulsive applications, and they are gaining attention from several researchers. This experimental study provides a framework for harnessing traveling waves in a 1D beam immersed under quiescent water using two force input methods and providing a motion to an object floating on the surface of the water.

In this study, underwater traveling waves are tailored using structural vibrations at five different frequencies in the range of 10Hz to 300Hz. The resulting fluid motion provides a propulsive thrust that moves a …


Open-Source Tig-Based Metal 3d-Printing, Shane Oberloier Jan 2021

Open-Source Tig-Based Metal 3d-Printing, Shane Oberloier

Dissertations, Master's Theses and Master's Reports

Metal 3-D printing has been relegated to high-cost proprietary high-resolution systems and low-resolution low-cost metal inert gas (MIG) systems. In order to provide a path to high-resolution, low-cost, metal 3-D printing, this manuscript proposes a new open source metal 3-D printer design based around a low-cost tungsten inert gas (TIG) welder coupled to a commercial open source self replicating rapid prototyper. Optimal printing parameters for the machine are acquired using a novel computational intelligence software. TIG has many advantages over MIG, such as having a low heat input, clean beads, and the potential for both high-resolution prints as well as …


Integration Of Robotic And Electro-Pneumatic Systems Using Advanced Control And Communication Schemes, Chinmay Kondekar Jan 2021

Integration Of Robotic And Electro-Pneumatic Systems Using Advanced Control And Communication Schemes, Chinmay Kondekar

Dissertations, Master's Theses and Master's Reports

Modern industrial automation systems are designed by interconnecting various subsystems which work together to perform a process. The thesis project aims to integrate fragmented subsystems into a flexible and reconfigurable system through advanced communication protocols and perform a process to demonstrate the effectiveness of interconnected systems.

The system consists of three six-axis robots, one electro-pneumatic robot, and two conveyors connected using EthernetIP communication and hardwired connections. The interconnected system works together to perform machining of a workpiece using advanced control methods of CAD to robot path generation, central control through a PLC, and process control through HMI.

Standardized programming blocks …


High-Performance Spectral Methods For Computer-Aided Design Of Integrated Circuits, Zhiqiang Zhao Jan 2020

High-Performance Spectral Methods For Computer-Aided Design Of Integrated Circuits, Zhiqiang Zhao

Dissertations, Master's Theses and Master's Reports

Recent research shows that by leveraging the key spectral properties of eigenvalues and eigenvectors of graph Laplacians, more efficient algorithms can be developed for tackling many graph-related computing tasks. In this dissertation, spectral methods are utilized for achieving faster algorithms in the applications of very-large-scale integration (VLSI) computer-aided design (CAD)

First, a scalable algorithmic framework is proposed for effective-resistance preserving spectral reduction of large undirected graphs. The proposed method allows computing much smaller graphs while preserving the key spectral (structural) properties of the original graph. Our framework is built upon the following three key components: a spectrum-preserving node aggregation and …


Estimation Of Multi-Directional Ankle Impedance As A Function Of Lower Extremity Muscle Activation, Lauren Knop Jan 2019

Estimation Of Multi-Directional Ankle Impedance As A Function Of Lower Extremity Muscle Activation, Lauren Knop

Dissertations, Master's Theses and Master's Reports

The purpose of this research is to investigate the relationship between the mechanical impedance of the human ankle and the corresponding lower extremity muscle activity. Three experimental studies were performed to measure the ankle impedance about multiple degrees of freedom (DOF), while the ankle was subjected to different loading conditions and different levels of muscle activity. The first study determined the non-loaded ankle impedance in the sagittal, frontal, and transverse anatomical planes while the ankle was suspended above the ground. The subjects actively co-contracted their agonist and antagonistic muscles to various levels, measured using electromyography (EMG). An Artificial Neural Network …


Estimation And Prediction Of The Human Gait Dynamics For The Control Of An Ankle-Foot Prosthesis, Guilherme Aramizo Ribeiro Jan 2019

Estimation And Prediction Of The Human Gait Dynamics For The Control Of An Ankle-Foot Prosthesis, Guilherme Aramizo Ribeiro

Dissertations, Master's Theses and Master's Reports

With the growing population of amputees, powered prostheses can be a solution to improve the quality of life for many people. Powered ankle-foot prostheses can be made to behave similar to the lost limb via controllers that emulate the mechanical impedance of the human ankle. Therefore, the understanding of human ankle dynamics is of major significance. First, this work reports the modulation of the mechanical impedance via two mechanisms: the co-contraction of the calf muscles and a change of mean ankle torque and angle. Then, the mechanical impedance of the ankle was determined, for the first time, as a multivariable …


Resource Optimization In Wireless Sensor Networks For An Improved Field Coverage And Cooperative Target Tracking, Husam Sweidan Jan 2018

Resource Optimization In Wireless Sensor Networks For An Improved Field Coverage And Cooperative Target Tracking, Husam Sweidan

Dissertations, Master's Theses and Master's Reports

There are various challenges that face a wireless sensor network (WSN) that mainly originate from the limited resources a sensor node usually has. A sensor node often relies on a battery as a power supply which, due to its limited capacity, tends to shorten the life-time of the node and the network as a whole. Other challenges arise from the limited capabilities of the sensors/actuators a node is equipped with, leading to complication like a poor coverage of the event, or limited mobility in the environment. This dissertation deals with the coverage problem as well as the limited power and …


Anomaly Inference Based On Heterogeneous Data Sources In An Electrical Distribution System, Yachen Tang Jan 2018

Anomaly Inference Based On Heterogeneous Data Sources In An Electrical Distribution System, Yachen Tang

Dissertations, Master's Theses and Master's Reports

Harnessing the heterogeneous data sets would improve system observability. While the current metering infrastructure in distribution network has been utilized for the operational purpose to tackle abnormal events, such as weather-related disturbance, the new normal we face today can be at a greater magnitude. Strengthening the inter-dependencies as well as incorporating new crowd-sourced information can enhance operational aspects such as system reconfigurability under extreme conditions. Such resilience is crucial to the recovery of any catastrophic events. In this dissertation, it is focused on the anomaly of potential foul play within an electrical distribution system, both primary and secondary networks as …


Control Of A Powered Ankle-Foot Prosthesis: From Perception To Impedance Modulation, Guilherme Aramizo Ribeiro Jan 2017

Control Of A Powered Ankle-Foot Prosthesis: From Perception To Impedance Modulation, Guilherme Aramizo Ribeiro

Dissertations, Master's Theses and Master's Reports

Active ankle prostheses controllers are demonstrating gaining smart features to improve the safety and comfort offor users. The perception of user intention to modulate the ankle dynamics is a well-known example of such feature. But not much work focused on the perception of the environment, nor how the environment should be included in the mechanical design and control of the prosthesisprostheses. The proposed work aims to improve the feasibility of integrate the environment perception integration intoto the prostheses controllersler, and to define the desired ankle dynamics, as mechanical impedance, duringof the human walk on different environmental settings. As a preliminary …


Using Lower Extremity Muscle Activations To Estimate Human Ankle Impedance In The External-Internal Direction, Lauren N. Knop Jan 2017

Using Lower Extremity Muscle Activations To Estimate Human Ankle Impedance In The External-Internal Direction, Lauren N. Knop

Dissertations, Master's Theses and Master's Reports

For millions of people, mobility has been afflicted by lower limb amputation. Lower extremity prostheses have been used to improve the mobility of an amputee; however, they often require additional compensation from other joints and do not allow for natural maneuverability. To improve upon the functionality of ankle-foot prostheses, it is necessary to understand the role of different muscle activations in the modulation of mechanical impedance of a healthy human ankle. This report presents the results of using artificial neural networks (ANN) to determine the functional relationship between lower extremity electromyography (EMG) signals and ankle impedance in the transverse plane. …


Performance Comparison Of Binarized Neural Network With Convolutional Neural Network, Lopamudra Baruah Jan 2017

Performance Comparison Of Binarized Neural Network With Convolutional Neural Network, Lopamudra Baruah

Dissertations, Master's Theses and Master's Reports

Deep learning is a trending topic widely studied by researchers due to increase in the abundance of data and getting meaningful results with them. Convolutional Neural Networks (CNN) is one of the most popular architectures used in deep learning. Binarized Neural Network (BNN) is also a neural network which consists of binary weights and activations. Neural Networks has large number of parameters and overfitting is a common problem to these networks. To overcome the overfitting problem, dropout is a solution. Randomly dropping some neurons along with its connections helps to prevent co-adaptations which finally help in reducing overfitting. Many researchers …


High Performance Multiview Video Coding, Caoyang Jiang Jan 2017

High Performance Multiview Video Coding, Caoyang Jiang

Dissertations, Master's Theses and Master's Reports

Following the standardization of the latest video coding standard High Efficiency Video Coding in 2013, in 2014, multiview extension of HEVC (MV-HEVC) was published and brought significantly better compression performance of around 50% for multiview and 3D videos compared to multiple independent single-view HEVC coding. However, the extremely high computational complexity of MV-HEVC demands significant optimization of the encoder. To tackle this problem, this work investigates the possibilities of using modern parallel computing platforms and tools such as single-instruction-multiple-data (SIMD) instructions, multi-core CPU, massively parallel GPU, and computer cluster to significantly enhance the MVC encoder performance. The aforementioned computing tools …


A Testbed Design For Monitoring The Long-Term Spatial-Temporal Dynamics Of Underwater Acoustic Channels, Krishna Chaitanya Poduru Jan 2017

A Testbed Design For Monitoring The Long-Term Spatial-Temporal Dynamics Of Underwater Acoustic Channels, Krishna Chaitanya Poduru

Dissertations, Master's Theses and Master's Reports

The underwater acoustic network testbed helps to validate the theoretical results and bridge the gap between experimental results. Characterizing and modeling the spatial-temporal dynamics of underwater acoustic channels is essential to developing efficient and effective physical-layer communication algorithms and network protocols. This work dedicates to designing a testbed system to measure the spatial-temporal dynamics of underwater acoustic channels. The collected measurements will shed insights into the spatial-temporal correlation of underwater acoustic channels and will be used to evaluate the theoretical algorithms that are designed to model the spatial-temporal dynamics and to exploit the spatial-temporal dynamics for more efficient and effective …


Investigation Of The Use Of 3-D Printer Platform As Building Block For Rapid Design Of Research And Manufacturing Tool, Handy Chandra Jan 2017

Investigation Of The Use Of 3-D Printer Platform As Building Block For Rapid Design Of Research And Manufacturing Tool, Handy Chandra

Dissertations, Master's Theses and Master's Reports

This thesis attempts to show how an open source 3-D printer platform, the self replicating rapid prototype (RepRap), could be used to accelerate the development of research and manufacturing tools. Two projects are shown as examples, both utilizing components of the 3-D printer platform.

The first project is to develop an instrument capable of performing automated large-area four-point probe measurements. A modified RepRap 3-D Printer with a four-point probe in place of the 3-D printer head is utilized as a precision positioning platform. The printer together with custom designed measurement circuit and software performs automated measurement on multiple points on …


Design Automation For Carbon Nanotube Circuits Considering Performance And Security Optimization, Lin Liu Jan 2017

Design Automation For Carbon Nanotube Circuits Considering Performance And Security Optimization, Lin Liu

Dissertations, Master's Theses and Master's Reports

As prevailing copper interconnect technology advances to its fundamental physical limit, interconnect delay due to ever-increasing wire resistivity has greatly limited the circuit miniaturization. Carbon nanotube (CNT) interconnects have emerged as promising replacement materials for copper interconnects due to their superior conductivity. Buffer insertion for CNT interconnects is capable of improving circuit timing of signal nets with limited buffer deployment. However, due to the imperfection of fabricating long straight CNT, there exist significant unidimensional-spatially correlated variations on the critical CNT geometric parameters such as the diameter and density, which will affect the circuit performance.

This dissertation develops a novel timing …


Heterogeneous Multi-Sensor Fusion For 2d And 3d Pose Estimation, Hanieh Deilamsalehy Jan 2017

Heterogeneous Multi-Sensor Fusion For 2d And 3d Pose Estimation, Hanieh Deilamsalehy

Dissertations, Master's Theses and Master's Reports

Sensor fusion is a process in which data from different sensors is combined to acquire an output that cannot be obtained from individual sensors. This dissertation first considers a 2D image level real world problem from rail industry and proposes a novel solution using sensor fusion, then proceeds further to the more complicated 3D problem of multi sensor fusion for UAV pose estimation.

One of the most important safety-related tasks in the rail industry is an early detection of defective rolling stock components. Railway wheels and wheel bearings are two components prone to damage due to their interactions with the …