Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Computer Engineering

Machine Learning For Unmanned Aerial System (Uas) Networking, Jian Wang Dec 2021

Machine Learning For Unmanned Aerial System (Uas) Networking, Jian Wang

Doctoral Dissertations and Master's Theses

Fueled by the advancement of 5G new radio (5G NR), rapid development has occurred in many fields. Compared with the conventional approaches, beamforming and network slicing enable 5G NR to have ten times decrease in latency, connection density, and experienced throughput than 4G long term evolution (4G LTE). These advantages pave the way for the evolution of Cyber-physical Systems (CPS) on a large scale. The reduction of consumption, the advancement of control engineering, and the simplification of Unmanned Aircraft System (UAS) enable the UAS networking deployment on a large scale to become feasible. The UAS networking can finish multiple complex …


Rf Fingerprinting Unmanned Aerial Vehicles, Norah Ondus Oct 2021

Rf Fingerprinting Unmanned Aerial Vehicles, Norah Ondus

Doctoral Dissertations and Master's Theses

As unmanned aerial vehicles (UAVs) continue to become more readily available, their use in civil, military, and commercial applications is growing significantly. From aerial surveillance to search-and-rescue to package delivery the use cases of UAVs are accelerating. This accelerating popularity gives rise to numerous attack possibilities for example impersonation attacks in drone-based delivery, in a UAV swarm, etc. In order to ensure drone security, in this project we propose an authentication system based on RF fingerprinting. Specifically, we extract and use the device-specific hardware impairments embedded in the transmitted RF signal to separate the identity of each UAV. To achieve …


Leveraging Machine Learning Techniques Towards Intelligent Networking Automation, Cesar A. Gomez Aug 2021

Leveraging Machine Learning Techniques Towards Intelligent Networking Automation, Cesar A. Gomez

Electronic Thesis and Dissertation Repository

In this thesis, we address some of the challenges that the Intelligent Networking Automation (INA) paradigm poses. Our goal is to design schemes leveraging Machine Learning (ML) techniques to cope with situations that involve hard decision-making actions. The proposed solutions are data-driven and consist of an agent that operates at network elements such as routers, switches, or network servers. The data are gathered from realistic scenarios, either actual network deployments or emulated environments. To evaluate the enhancements that the designed schemes provide, we compare our solutions to non-intelligent ones. Additionally, we assess the trade-off between the obtained improvements and the …


Hardware For Quantized Mixed-Precision Deep Neural Networks, Andres Rios Aug 2021

Hardware For Quantized Mixed-Precision Deep Neural Networks, Andres Rios

Open Access Theses & Dissertations

Recently, there has been a push to perform deep learning (DL) computations on the edge rather than the cloud due to latency, network connectivity, energy consumption, and privacy issues. However, state-of-the-art deep neural networks (DNNs) require vast amounts of computational power, data, and energyâ??resources that are limited on edge devices. This limitation has brought the need to design domain-specific architectures (DSAs) that implement DL-specific hardware optimizations. Traditionally DNNs have run on 32-bit floating-point numbers; however, a body of research has shown that DNNs are surprisingly robust and do not require all 32 bits. Instead, using quantization, networks can run on …


Forecasting Pedestrian Trajectory Using Deep Learning, Arsal Syed Aug 2021

Forecasting Pedestrian Trajectory Using Deep Learning, Arsal Syed

UNLV Theses, Dissertations, Professional Papers, and Capstones

In this dissertation we develop different methods for forecasting pedestrian trajectories. Complete understanding of pedestrian motion is essential for autonomous agents and social robots to make realistic and safe decisions. Current trajectory prediction methods rely on incorporating historic motion, scene features and social interaction to model pedestrian behaviors. Our focus is to accurately understand scene semantics to better forecast trajectories. In order to do so, we leverage semantic segmentation to encode static scene features such as walkable paths, entry/exits, static obstacles etc. We further evaluate the effectiveness of using semantic maps on different datasets and compare its performance with already …


A Study Of Deep Reinforcement Learning In Autonomous Racing Using Deepracer Car, Mukesh Ghimire May 2021

A Study Of Deep Reinforcement Learning In Autonomous Racing Using Deepracer Car, Mukesh Ghimire

Honors Theses

Reinforcement learning is thought to be a promising branch of machine learning that has the potential to help us develop an Artificial General Intelligence (AGI) machine. Among the machine learning algorithms, primarily, supervised, semi supervised, unsupervised and reinforcement learning, reinforcement learning is different in a sense that it explores the environment without prior knowledge, and determines the optimal action. This study attempts to understand the concept behind reinforcement learning, the mathematics behind it and see it in action by deploying the trained model in Amazon's DeepRacer car. DeepRacer, a 1/18th scaled autonomous car, is the agent which is trained …


Time Series Data Analysis Using Machine Learning-(Ml) Approach, Mvv Prasad Kantipudi Dr., Pradeep Kumar N.S Dr., S.Sreenath Kashyap Dr., Ss Anusha Vemuri Ms Jan 2021

Time Series Data Analysis Using Machine Learning-(Ml) Approach, Mvv Prasad Kantipudi Dr., Pradeep Kumar N.S Dr., S.Sreenath Kashyap Dr., Ss Anusha Vemuri Ms

Library Philosophy and Practice (e-journal)

Healthcare benefits related to continuous monitoring of human movement and physical activity can potentially reduce the risk of accidents associated with elderly living alone at home. Based on the literature review, it is found that many studies focus on human activity recognition and are still active towards achieving practical solutions to support the elderly care system. The proposed system has introduced a joint approach of machine learning and signal processing technology for the recognition of human's physical movements using signal data generated by accelerometer sensors. The framework adopts the concept of DSP to select very descriptive feature sets and uses …