Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

PDF

Theses/Dissertations

Robotics

Articles 1 - 25 of 25

Full-Text Articles in Computer Engineering

Implementation Of Static Rfid Landmarks In Slam For Planogram Compliance, Brennan L. Drake Apr 2023

Implementation Of Static Rfid Landmarks In Slam For Planogram Compliance, Brennan L. Drake

Honors College Theses

Autonomous robotic systems are becoming increasingly prevalent in everyday life and exhibit robust solutions in a wide range of applications. They face many obstacles with the foremost of which being SLAM, or Simultaneous Localization and Mapping, that encompasses both creation of the map of an unknown environment and localization of the robot in said environment. In this experiment, researchers propose the use of RFID tags in a semi-dynamic commercial environment to provide concrete landmarks for localization and mapping in pursuit of increased locational certainty. With this obtained, the ultimate goal of the research is to construct a robotics platform for …


Parallel Real Time Rrt*: An Rrt* Based Path Planning Process, David Yackzan Jan 2023

Parallel Real Time Rrt*: An Rrt* Based Path Planning Process, David Yackzan

Theses and Dissertations--Mechanical Engineering

This thesis presents a new parallelized real-time path planning process. This process is an extension of the Real-Time Rapidly Exploring Random Trees* (RT-RRT*) algorithm developed by Naderi et al in 2015 [1]. The RT-RRT* algorithm was demonstrated on a simulated two-dimensional dynamic environment while finding paths to a varying target state. We demonstrate that the original algorithm is incapable of running at a sufficient rate for control of a 7-degree-of-freedom (7-DoF) robotic arm while maintaining a path planning tree in 7 dimensions. This limitation is due to the complexity of maintaining a tree in a high-dimensional space and the network …


Evaluation Of Lidar Uncertainty And Applications Towards Slam In Off-Road Environments, Zachary D. Jeffries Jan 2023

Evaluation Of Lidar Uncertainty And Applications Towards Slam In Off-Road Environments, Zachary D. Jeffries

Dissertations, Master's Theses and Master's Reports

Safe and robust operation of autonomous ground vehicles in all types of conditions and environment necessitates complex perception systems and unique, innovative solutions. This work addresses automotive lidar and maximizing the performance of a simultaneous localization and mapping stack. An exploratory experiment and an open benchmarking experiment are both presented. Additionally, a popular SLAM application is extended to use the type of information gained from lidar characterization, demonstrating the performance gains and necessity to tightly couple perception software and sensor hardware. The first exploratory experiment collects data from child-sized, low-reflectance targets over a range from 15 m to 35 m. …


Neuromorphic Computing Applications In Robotics, Noah Zins Jan 2023

Neuromorphic Computing Applications In Robotics, Noah Zins

Dissertations, Master's Theses and Master's Reports

Deep learning achieves remarkable success through training using massively labeled datasets. However, the high demands on the datasets impede the feasibility of deep learning in edge computing scenarios and suffer from the data scarcity issue. Rather than relying on labeled data, animals learn by interacting with their surroundings and memorizing the relationships between events and objects. This learning paradigm is referred to as associative learning. The successful implementation of associative learning imitates self-learning schemes analogous to animals which resolve the challenges of deep learning. Current state-of-the-art implementations of associative memory are limited to simulations with small-scale and offline paradigms. Thus, …


Developing A Miniature Smart Boat For Marine Research, Michael Isaac Eirinberg Jun 2022

Developing A Miniature Smart Boat For Marine Research, Michael Isaac Eirinberg

Computer Engineering

This project examines the development of a smart boat which could serve as a possible marine research apparatus. The smart boat consists of a miniature vessel containing a low-cost microcontroller to live stream a camera feed, GPS telemetry, and compass data through its own WiFi access point. The smart boat also has the potential for autonomous navigation. My project captivated the interest of several members of California Polytechnic State University, San Luis Obispo’s (Cal Poly SLO) Marine Science Department faculty, who proposed a variety of fascinating and valuable smart boat applications.


Learning Robot Motion From Creative Human Demonstration, Charles C. Dietzel Jan 2022

Learning Robot Motion From Creative Human Demonstration, Charles C. Dietzel

Theses and Dissertations

This thesis presents a learning from demonstration framework that enables a robot to learn and perform creative motions from human demonstrations in real-time. In order to satisfy all of the functional requirements for the framework, the developed technique is comprised of two modular components, which integrate together to provide the desired functionality. The first component, called Dancing from Demonstration (DfD), is a kinesthetic learning from demonstration technique. This technique is capable of playing back newly learned motions in real-time, as well as combining multiple learned motions together in a configurable way, either to reduce trajectory error or to generate entirely …


Collaborative Human-Machine Interfaces For Mobile Manipulators., Shamsudeen Olawale Abubakar Dec 2021

Collaborative Human-Machine Interfaces For Mobile Manipulators., Shamsudeen Olawale Abubakar

Electronic Theses and Dissertations

The use of mobile manipulators in service industries as both agents in physical Human Robot Interaction (pHRI) and for social interactions has been on the increase in recent times due to necessities like compensating for workforce shortages and enabling safer and more efficient operations amongst other reasons. Collaborative robots, or co-bots, are robots that are developed for use with human interaction through direct contact or close proximity in a shared space with the human users. The work presented in this dissertation focuses on the design, implementation and analysis of components for the next-generation collaborative human machine interfaces (CHMI) needed for …


A Study Of Deep Reinforcement Learning In Autonomous Racing Using Deepracer Car, Mukesh Ghimire May 2021

A Study Of Deep Reinforcement Learning In Autonomous Racing Using Deepracer Car, Mukesh Ghimire

Honors Theses

Reinforcement learning is thought to be a promising branch of machine learning that has the potential to help us develop an Artificial General Intelligence (AGI) machine. Among the machine learning algorithms, primarily, supervised, semi supervised, unsupervised and reinforcement learning, reinforcement learning is different in a sense that it explores the environment without prior knowledge, and determines the optimal action. This study attempts to understand the concept behind reinforcement learning, the mathematics behind it and see it in action by deploying the trained model in Amazon's DeepRacer car. DeepRacer, a 1/18th scaled autonomous car, is the agent which is trained …


Distance-Based Formation Control Using Decentralized Sensing With Infrared Photodiodes, Steven Williams Mar 2021

Distance-Based Formation Control Using Decentralized Sensing With Infrared Photodiodes, Steven Williams

LSU Master's Theses

This study presents an onboard sensor system for determining the relative positions of mobile robots, which is used in decentralized distance-based formation controllers for multi-agent systems. This sensor system uses infrared photodiodes and LEDs; its effective use requires coordination between the emitting and detecting robots. A technique is introduced for calculating the relative positions based on photodiode readings, and an automated calibration system is designed for future maintenance. By measuring the relative positions of their neighbors, each robot is capable of running an onboard formation controller, which is independent of both a centralized controller and a global positioning-like system (e.g., …


Design, Manufacture, And Test Of A Hybrid Aerial-Ground Robotic Platform, William Garrett Willmon Jan 2021

Design, Manufacture, And Test Of A Hybrid Aerial-Ground Robotic Platform, William Garrett Willmon

Electronic Theses and Dissertations

A hybrid aerial-ground robotic platform allows for enhanced functionality combining most of the operational profiles of an aerial and ground vehicle with applications to intelligence, surveillance, reconnaissance (ISR), infrastructure inspection, emergency response, photography, etc. Motivated by this challenge, we designed, developed, and tested a prototype hybrid aerial-ground robotic vehicle capable of guidance, navigation, and control in the air and on the ground. The thesis focus is on the system design. As such, at first, we designed and analyzed the mechanical component to ensure durability. We then designed the electrical component to reduce overall weight and maximize battery life. We developed …


Decentralized, Noncooperative Multirobot Path Planning With Sample-Basedplanners, William Le Mar 2020

Decentralized, Noncooperative Multirobot Path Planning With Sample-Basedplanners, William Le

Master's Theses

In this thesis, the viability of decentralized, noncooperative multi-robot path planning algorithms is tested. Three algorithms based on the Batch Informed Trees (BIT*) algorithm are presented. The first of these algorithms combines Optimal Reciprocal Collision Avoidance (ORCA) with BIT*. The second of these algorithms uses BIT* to create a path which the robots then follow using an artificial potential field (APF) method. The final algorithm is a version of BIT* that supports replanning. While none of these algorithms take advantage of sharing information between the robots, the algorithms are able to guide the robots to their desired goals, with the …


Route Planning For Long-Term Robotics Missions, Christopher Alexander Arend Tatsch Jan 2020

Route Planning For Long-Term Robotics Missions, Christopher Alexander Arend Tatsch

Graduate Theses, Dissertations, and Problem Reports

Many future robotic applications such as the operation in large uncertain environment depend on a more autonomous robot. The robotics long term autonomy presents challenges on how to plan and schedule goal locations across multiple days of mission duration. This is an NP-hard problem that is infeasible to solve for an optimal solution due to the large number of vertices to visit. In some cases the robot hardware constraints also adds the requirement to return to a charging station multiple times in a long term mission. The uncertainties in the robot model and environment require the robot planner to account …


Involuntary Signal-Based Grounding Of Civilian Unmanned Aerial Systems (Uas) In Civilian Airspace, Keith Conley Dec 2019

Involuntary Signal-Based Grounding Of Civilian Unmanned Aerial Systems (Uas) In Civilian Airspace, Keith Conley

Master's Theses

This thesis investigates the involuntary signal-based grounding of civilian unmanned aerial systems (UAS) in unauthorized air spaces. The technique proposed here will forcibly land unauthorized UAS in a given area in such a way that the UAS will not be harmed, and the pilot cannot stop the landing. The technique will not involuntarily ground authorized drones which will be determined prior to the landing. Unauthorized airspaces include military bases, university campuses, areas affected by a natural disaster, and stadiums for public events. This thesis proposes an early prototype of a hardware-based signal based involuntary grounding technique to handle the problem …


Audio Beat Detection With Application To Robot Drumming, Michael James Engstrom Oct 2019

Audio Beat Detection With Application To Robot Drumming, Michael James Engstrom

Dissertations and Theses

This Drumming Robot thesis demonstrates the design of a robot which can play drums in rhythm to an external audio source. The audio source can be either a pre-recorded .wav file or a live sample .wav file from a microphone. The dominant beats-per-minute (BPM) of the audio would be extracted and the robot would drum in time to the BPM. A Fourier Analysis-based BPM detection algorithm, developed by Eric Scheirer (Tempo and beat analysis of acoustical musical signals)i was adopted and implemented. In contrast to other popular algorithms, the main advantage of Scheirer's algorithm is it has …


A Low-Cost Experimental Testbed For Multi-Agent System Coordination Control, Victor Fernandez-Kim Jun 2019

A Low-Cost Experimental Testbed For Multi-Agent System Coordination Control, Victor Fernandez-Kim

LSU Master's Theses

A multi-agent system can be defined as a coordinated network of mobile, physical agents that execute complex tasks beyond their individual capabilities. Observations of biological multi-agent systems in nature reveal that these ``super-organisms” accomplish large scale tasks by leveraging the inherent advantages of a coordinated group. With this in mind, such systems have the potential to positively impact a wide variety of engineering applications (e.g. surveillance, self-driving cars, and mobile sensor networks). The current state of research in the area of multi-agent systems is quickly evolving from the theoretical development of coordination control algorithms and their computer simulations to experimental …


Search Methods For Mobile Manipulator Performance Measurement, Samuel Nana Yaw Amoako-Frimpong Jul 2018

Search Methods For Mobile Manipulator Performance Measurement, Samuel Nana Yaw Amoako-Frimpong

Master's Theses (2009 -)

Mobile manipulators are a potential solution to the increasing need for additional flexibility and mobility in industrial robotics applications. However, they tend to lack the accuracy and precision achieved by fixed manipulators, especially in scenarios where both the manipulator and the autonomous vehicle move simultaneously. This thesis analyzes the problem of dynamically evaluating the positioning error of mobile manipulators. In particular, it investigates the use of Bayesian methods to predict the position of the end-effector in the presence of uncertainty propagated from the mobile platform. Simulations and real-world experiments are carried out to test the proposed method against a deterministic …


Roborodentia Robot: Treadbot, Stephen C. Schmidt Jun 2018

Roborodentia Robot: Treadbot, Stephen C. Schmidt

Computer Science and Software Engineering

This document is a summary of my contest entry to the 2018 Cal Poly Roborodentia competition. It is meant to be a process overview and design outline of the mechanical, electrical, and software components of my robot.


A Continous Rotary Actuation Mechanism For A Powered Hip Exoskeleton, Matthew C. Ryder Jul 2015

A Continous Rotary Actuation Mechanism For A Powered Hip Exoskeleton, Matthew C. Ryder

Masters Theses

This thesis presents a new mechanical design for an exoskeleton actuator to power the sagittal plane motion in the human hip. The device uses a DC motor to drive a Scotch yoke mechanism and series elasticity to take advantage of the cyclic nature of human gait and to reduce the maximum power and control requirements of the exoskeleton. The Scotch yoke actuator creates a position-dependent transmission that varies between 4:1 and infinity, with the peak transmission ratio aligned to the peak torque periods of the human gait cycle. Simulation results show that both the peak and average motor torque can …


Ubot-7: The Design Of A Compliant Dexterous Mobile Manipulator, Jonathan Cummings Nov 2014

Ubot-7: The Design Of A Compliant Dexterous Mobile Manipulator, Jonathan Cummings

Masters Theses

This thesis presents the design of uBot-7, the latest version of a dexterous mobile manipulator. This platform has been iteratively developed to realize a high performance-to-cost dexterous whole body manipulator with respect to mobile manipulation. The semi-anthropomorphic design of the uBot is a demonstrated and functional research platform for developing advanced autonomous perception, manipulation, and mobility tasks. The goal of this work is to improve the uBot’s ability to sense and interact with its environment in order to increase the platforms capability to operate dexterously, through the incorporation of joint torque feedback, and safely, through the implementation of passive and …


Modeling, Analysis, And Control Of A Mobile Robot For In Vivo Fluoroscopy Of Human Joints During Natural Movements, Matthew A. Young May 2014

Modeling, Analysis, And Control Of A Mobile Robot For In Vivo Fluoroscopy Of Human Joints During Natural Movements, Matthew A. Young

Doctoral Dissertations

In this dissertation, the modeling, analysis and control of a multi-degree of freedom (mdof) robotic fluoroscope was investigated. A prototype robotic fluoroscope exists, and consists of a 3 dof mobile platform with two 2 dof Cartesian manipulators mounted symmetrically on opposite sides of the platform. One Cartesian manipulator positions the x-ray generator and the other Cartesian manipulator positions the x-ray imaging device. The robotic fluoroscope is used to x-ray skeletal joints of interest of human subjects performing natural movement activities. In order to collect the data, the Cartesian manipulators must keep the x-ray generation and imaging devices accurately aligned while …


Analysis Of A Dual Scissored-Pair,Variable-Speed, Control Moment Gyroscope Driven Spherical Robot, Richard Chase Jan 2014

Analysis Of A Dual Scissored-Pair,Variable-Speed, Control Moment Gyroscope Driven Spherical Robot, Richard Chase

Wayne State University Dissertations

The objective of this research is to compare barycenter offset based designs of spherical robots to control moment gyroscope (CMG) based designs in order to determine which approach is most effective. The first objective was to develop a list of current state of the art designs in order to gain an overall understanding of what the obstacles in this area of research were. The investigation showed that barycenter offset designs can produce a low, continuous output torque, whereas CMG based designs can usually only produce a high, momentary output torque. The second objective was to develop a CMG based design …


Caddy: A 2005 Roborodentia Entry With Vision And Path Planning Abilities, Taylor Braun-Jones Mar 2013

Caddy: A 2005 Roborodentia Entry With Vision And Path Planning Abilities, Taylor Braun-Jones

Computer Engineering

Roborodentia is an autonomous robotics competition held each year during Cal Poly’s Open House. For the 2005 competition, robot entries needed to navigate a maze searching for three randomly placed golf balls, collect them, and then deposit the balls in the “nest” at the end of the maze. A newly added aspect for the 2005 competition included two bonus balls that were placed on a platform behind the wall in two predetermined corners of the maze.

Caddy is a robot that was entered into the 2005 Roborodentia competition. Caddy included a vision system that allowed searching for balls down untraveled …


A Study Of A Novel Modular Variable Geometry Frame Arranged As A Robotic Surface, Christopher James Salisbury Dec 2011

A Study Of A Novel Modular Variable Geometry Frame Arranged As A Robotic Surface, Christopher James Salisbury

UNLV Theses, Dissertations, Professional Papers, and Capstones

The novel concept of a "variable geometry frame" is introduced and explored through a three-dimensional robotic surface which is devised and implemented using triangular modules. The link design is optimized using surplus motor dimensions as firm constraints, and round numbers for further arbitrary constraints. Each module is connected by a passive six-bar mechanism that mimics the constraints of a spherical joint at each triangle intersection. A three dimensional inkjet printer is used to create a six-module prototype designed around surplus stepper motors powered by an old computer power supply as a proof-of-concept example.

The finite element method is applied to …


Multiple Robot Boundary Tracking With Phase And Workload Balancing, Michael Jay Boardman Jun 2010

Multiple Robot Boundary Tracking With Phase And Workload Balancing, Michael Jay Boardman

Master's Theses

This thesis discusses the use of a cooperative multiple robot system as applied to distributed tracking and sampling of a boundary edge. Within this system the boundary edge is partitioned into subsegments, each allocated to a particular robot such that workload is balanced across the robots. Also, to minimize the time between sampling local areas of the boundary edge, it is desirable to minimize the difference between each robot’s progression (i.e. phase) along its allocated sub segment of the edge. The paper introduces a new distributed controller that handles both workload and phase balancing. Simulation results are used to illustrate …


Cooperative Remote Sensing And Actuation Using Networked Unmanned Vehicles, Haiyang Chao May 2010

Cooperative Remote Sensing And Actuation Using Networked Unmanned Vehicles, Haiyang Chao

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

This dissertation focuses on how to design and employ networked unmanned vehicles for remote sensing and distributed control purposes in the current information-rich world. The target scenarios are environmental or agricultural applications such as river/reservoir surveillance, wind profiling measurement, and monitoring/control of chemical leaks, etc. AggieAir, a small and low-cost unmanned aircraft system, is designed based on the remote sensing requirements from environmental monitoring missions. The state estimation problem and the advanced lateral flight controller design problem are further attacked focusing on the small unmanned aerial vehicle (UAV) platform. Then the UAV-based remote sensing problem is focused with further flight …