Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 26 of 26

Full-Text Articles in Computer Engineering

A Memory-Centric Customizable Domain-Specific Fpga Overlay For Accelerating Machine Learning Applications, Atiyehsadat Panahi Aug 2022

A Memory-Centric Customizable Domain-Specific Fpga Overlay For Accelerating Machine Learning Applications, Atiyehsadat Panahi

Graduate Theses and Dissertations

Low latency inferencing is of paramount importance to a wide range of real time and userfacing Machine Learning (ML) applications. Field Programmable Gate Arrays (FPGAs) offer unique advantages in delivering low latency as well as energy efficient accelertors for low latency inferencing. Unfortunately, creating machine learning accelerators in FPGAs is not easy, requiring the use of vendor specific CAD tools and low level digital and hardware microarchitecture design knowledge that the majority of ML researchers do not possess. The continued refinement of High Level Synthesis (HLS) tools can reduce but not eliminate the need for hardware-specific design knowledge. The designs …


Structural Checking Tool Restructure And Matching Improvements, Derek Taylor May 2022

Structural Checking Tool Restructure And Matching Improvements, Derek Taylor

Graduate Theses and Dissertations

With the rising complexity and size of hardware designs, saving development time and cost by employing third-party intellectual property (IP) into various first-party designs has become a necessity. However, using third-party IPs introduces the risk of adding malicious behavior to the design, including hardware Trojans. Different from software Trojan detection, the detection of hardware Trojans in an efficient and cost-effective manner is an ongoing area of study and has significant complexities depending on the development stage where Trojan detection is leveraged. Therefore, this thesis research proposes improvements to various components of the soft IP analysis methodology utilized by the Structural …


A Novel Data Lineage Model For Critical Infrastructure And A Solution To A Special Case Of The Temporal Graph Reachability Problem, Ian Moncur May 2022

A Novel Data Lineage Model For Critical Infrastructure And A Solution To A Special Case Of The Temporal Graph Reachability Problem, Ian Moncur

Graduate Theses and Dissertations

Rapid and accurate damage assessment is crucial to minimize downtime in critical infrastructure. Dependency on modern technology requires fast and consistent techniques to prevent damage from spreading while also minimizing the impact of damage on system users. One technique to assist in assessment is data lineage, which involves tracing a history of dependencies for data items. The goal of this thesis is to present one novel model and an algorithm that uses data lineage with the goal of being fast and accurate. In function this model operates as a directed graph, with the vertices being data items and edges representing …


Live Access Control Policy Error Detection Through Hardware, Bryce Mendenhall May 2022

Live Access Control Policy Error Detection Through Hardware, Bryce Mendenhall

Graduate Theses and Dissertations

Access Control (AC) is a widely used security measure designed to protect resources and infrastructure in an information system. The integrity of the AC policy is crucial to the protection of the system. Errors within an AC policy may cause many vulnerabilities such as information leaks, information loss, and malicious activities. Thus, such errors must be detected and promptly fixed. However, current AC error detection models do not allow for real-time error detection, nor do they provide the source of errors. This thesis presents a live error detection model called LogicDetect which utilizes emulated Boolean digital logic circuits to provide …


Design, Extraction, And Optimization Tool Flows And Methodologies For Homogeneous And Heterogeneous Multi-Chip 2.5d Systems, Md Arafat Kabir Dec 2021

Design, Extraction, And Optimization Tool Flows And Methodologies For Homogeneous And Heterogeneous Multi-Chip 2.5d Systems, Md Arafat Kabir

Graduate Theses and Dissertations

Chip and packaging industries are making significant progress in 2.5D design as a result of increasing popularity of their application. In advanced high-density 2.5D packages, package redistribution layers become similar to chip Back-End-of-Line routing layers, and the gap between them scales down with pin density improvement. Chiplet-package interactions become significant and severely affect system performance and reliability. Moreover, 2.5D integration offers opportunities to apply novel design techniques. The traditional die-by-die design approach neither carefully considers these interactions nor fully exploits the cross-boundary design opportunities.

This thesis presents chiplet-package cross-boundary design, extraction, analysis, and optimization tool flows and methodologies for high-density …


Computational Frameworks For Multi-Robot Cooperative 3d Printing And Planning, Laxmi Prasad Poudel Jul 2021

Computational Frameworks For Multi-Robot Cooperative 3d Printing And Planning, Laxmi Prasad Poudel

Graduate Theses and Dissertations

This dissertation proposes a novel cooperative 3D printing (C3DP) approach for multi-robot additive manufacturing (AM) and presents scheduling and planning strategies that enable multi-robot cooperation in the manufacturing environment. C3DP is the first step towards achieving the overarching goal of swarm manufacturing (SM). SM is a paradigm for distributed manufacturing that envisions networks of micro-factories, each of which employs thousands of mobile robots that can manufacture different products on demand. SM breaks down the complicated supply chain used to deliver a product from a large production facility from one part of the world to another. Instead, it establishes a network …


An Fpga-Based Hardware Accelerator For The Digital Image Correlation Engine, Keaten Stokke May 2020

An Fpga-Based Hardware Accelerator For The Digital Image Correlation Engine, Keaten Stokke

Graduate Theses and Dissertations

The work presented in this thesis was aimed at the development of a hardware accelerator for the Digital Image Correlation engine (DICe) and compare two methods of data access, USB and Ethernet. The original DICe software package was created by Sandia National Laboratories and is written in C++. The software runs on any typical workstation PC and performs image correlation on available frame data produced by a camera. When DICe is introduced to a high volume of frames, the correlation time is on the order of days. The time to process and analyze data with DICe becomes a concern when …


Evaluation And Analysis Of Null Convention Logic Circuits, John Davis Brady Dec 2019

Evaluation And Analysis Of Null Convention Logic Circuits, John Davis Brady

Graduate Theses and Dissertations

Integrated circuit (IC) designers face many challenges in utilizing state-of-the-art technology nodes, such as the increased effects of process variation on timing analysis and heterogeneous multi-die architectures that span across multiple technologies while simultaneously increasing performance and decreasing power consumption. These challenges provide opportunity for utilization of asynchronous design paradigms due to their inherent flexibility and robustness.

While NULL Convention Logic (NCL) has been implemented in a variety of applications, current literature does not fully encompass the intricacies of NCL power performance across a variety of applications, technology nodes, circuit scale, and voltage scaling, thereby preventing further adoption and utilization …


Hardware Ip Classification Through Weighted Characteristics, Brendan Mcgeehan May 2019

Hardware Ip Classification Through Weighted Characteristics, Brendan Mcgeehan

Graduate Theses and Dissertations

Today’s business model for hardware designs frequently incorporates third-party Intellectual Property (IP) due to the many benefits it can bring to a company. For instance, outsourcing certain components of an overall design can reduce time-to-market by allowing each party to specialize and perfect a specific part of the overall design. However, allowing third-party involvement also increases the possibility of malicious attacks, such as hardware Trojan insertion. Trojan insertion is a particularly dangerous security threat because testing the functionality of an IP can often leave the Trojan undetected. Therefore, this thesis work provides an improvement on a Trojan detection method known …


Asynchronous Circuit Synthesis Using Multi-Threshold Null Convention Logic, Nicholas Renoudet Mize May 2019

Asynchronous Circuit Synthesis Using Multi-Threshold Null Convention Logic, Nicholas Renoudet Mize

Graduate Theses and Dissertations

As the demand for an energy-efficient alternative to traditional synchronous circuit design grows, hardware designers must reconsider the traditional clock tree. By doing away with the constrains of a clock, asynchronous sequential circuit designs can achieve a much greater level of efficiency. The utilization of asynchronous logic synthesis flows has enabled researchers to better implement asynchronous circuit designs which have been optimized using the same industry standard tools that are already used in sequential synchronous designs. This thesis offers a new flow for such tools which implements the MTNCL asynchronous circuit architecture.


Automatic Performance Optimization On Heterogeneous Computer Systems Using Manycore Coprocessors, Chenggang Lai Dec 2018

Automatic Performance Optimization On Heterogeneous Computer Systems Using Manycore Coprocessors, Chenggang Lai

Graduate Theses and Dissertations

Emerging computer architectures and advanced computing technologies, such as Intel’s Many Integrated Core (MIC) Architecture and graphics processing units (GPU), provide a promising solution to employ parallelism for achieving high performance, scalability and low power consumption. As a result, accelerators have become a crucial part in developing supercomputers. Accelerators usually equip with different types of cores and memory. It will compel application developers to reach challenging performance goals. The added complexity has led to the development of task-based runtime systems, which allow complex computations to be expressed as task graphs, and rely on scheduling algorithms to perform load balancing between …


An Rs-485 Transceiver In A Silicon Carbide Cmos Process, Maria Raquel Benavides Herrera Dec 2018

An Rs-485 Transceiver In A Silicon Carbide Cmos Process, Maria Raquel Benavides Herrera

Graduate Theses and Dissertations

This thesis presents the design, simulation and test results of a silicon carbide (SiC) RS-485 transceiver for high temperature applications. This circuit is a building block in the design and fabrication of a digital data processing and control system. Automation processes for extreme environments, remote connection to high temperature locations, deep earth drilling, and high temperature data acquisition are some of the potential applications for such a system. The transceiver was designed and developed in a 1.2 µm SiC-CMOS process by Raytheon Systems, Ltd. (UK). It has been tested with a supply voltage of 12 V and 15 V, temperatures …


Efficacy Of Multi-Threshold Null Convention Logic In Low-Power Applications, Brent Bell Aug 2018

Efficacy Of Multi-Threshold Null Convention Logic In Low-Power Applications, Brent Bell

Graduate Theses and Dissertations

In order for an asynchronous design paradigm such as Multi-Threshold NULL Convention Logic (MTNCL) to be adopted by industry, it is important for circuit designers to be aware of its advantages and drawbacks especially with respect to power usage. The power tradeoff between MTNCL and synchronous designs depends on many different factors including design type, circuit size, process node, and pipeline granularity. Each of these design dimensions influences the active power and the leakage power comparisons. This dissertation analyzes the effects of different design dimensions on power consumption and the associated rational for these effects. Results show that while MTNCL …


Asynchronous Data Processing Platforms For Energy Efficiency, Performance, And Scalability, Liang Men Aug 2016

Asynchronous Data Processing Platforms For Energy Efficiency, Performance, And Scalability, Liang Men

Graduate Theses and Dissertations

The global technology revolution is changing the integrated circuit industry from the one driven by performance to the one driven by energy, scalability and more-balanced design goals. Without clock-related issues, asynchronous circuits enable further design tradeoffs and in operation adaptive adjustments for energy efficiency. This dissertation work presents the design methodology of the asynchronous circuit using NULL Convention Logic (NCL) and multi-threshold CMOS techniques for energy efficiency and throughput optimization in digital signal processing circuits. Parallel homogeneous and heterogeneous platforms implementing adaptive dynamic voltage scaling (DVS) based on the observation of system fullness and workload prediction are developed for balanced …


Prevention Of Drone Jamming Using Hardware Sandboxing, Joshua Mead May 2016

Prevention Of Drone Jamming Using Hardware Sandboxing, Joshua Mead

Graduate Theses and Dissertations

In this thesis, we concern ourselves with the security of drone systems under jamming-based attacks. We explore a relatively new concept we previously devised, known as hardware sandboxing, to provide runtime monitoring of boundary signals and isolation through resource virtualization for non-trusted system-on-chip (SoC) components. The focus of this thesis is the synthesis of this design and structure with the anti-jamming, security needs of drone systems. We utilize Field Programmable Gate Array (FPGA) based development and target embedded Linux for our hardware sandbox and drone hardware/software system.

We design and implement our working concept on the Digilent Zybo FPGA, which …


Achieving A Better Balance Between Productivity And Performance On Fpgas Through Heterogeneous Extensible Multiprocessor Systems, Abazar Sadeghian May 2016

Achieving A Better Balance Between Productivity And Performance On Fpgas Through Heterogeneous Extensible Multiprocessor Systems, Abazar Sadeghian

Graduate Theses and Dissertations

Field Programmable Gate Arrays (FPGAs) were first introduced circa 1980, and they held the promise of delivering performance levels associated with customized circuits, but with productivity levels more closely associated with software development. Achieving both performance and productivity objectives has been a long standing challenge problem for the reconfigurable computing community and remains unsolved today. On one hand, Vendor supplied design flows have tended towards achieving the high levels of performance through gate level customization, but at the cost of very low productivity. On the other hand, FPGA densities are following Moore's law and and can now support complete multiprocessor …


Reducing Multiple Access Interference In Broadband Multi-User Wireless Networks, Ali Nayef Alqatawneh Jul 2015

Reducing Multiple Access Interference In Broadband Multi-User Wireless Networks, Ali Nayef Alqatawneh

Graduate Theses and Dissertations

This dissertation is devoted to developing multiple access interference (MAI) reduction techniques for multi-carrier multi-user wireless communication networks.

In multi-carrier code division multiple access (MC-CDMA) systems, a full multipath diversity can be achieved by transmitting one symbol over multiple orthogonal subcarriers by means of spreading codes. However, in frequency selective fading channels, orthogonality among users can be destroyed leading to MAI. MAI represents the main obstacle to support large number of users in multi-user wireless systems. Consequently, MAI reduction becomes a main challenge when designing multi-carrier multi-user wireless networks. In this dissertation, first, we study MC-CDMA systems with different existing …


Enabling Runtime Self-Coordination Of Reconfigurable Embedded Smart Cameras In Distributed Networks, Franck Ulrich Yonga Yonga May 2015

Enabling Runtime Self-Coordination Of Reconfigurable Embedded Smart Cameras In Distributed Networks, Franck Ulrich Yonga Yonga

Graduate Theses and Dissertations

Smart camera networks are real-time distributed embedded systems able to perform computer vision using multiple cameras. This new approach is a confluence of four major disciplines (computer vision, image sensors, embedded computing and sensor networks) and has been subject of intensive work in the past decades. The recent advances in computer vision and network communication, and the rapid growing in the field of high-performance computing, especially using reconfigurable devices, have enabled the design of more robust smart camera systems. Despite these advancements, the effectiveness of current networked vision systems (compared to their operating costs) is still disappointing; the main reason …


Design And Verification Environment For High-Performance Video-Based Embedded Systems, Michael Mefenza Nentedem May 2015

Design And Verification Environment For High-Performance Video-Based Embedded Systems, Michael Mefenza Nentedem

Graduate Theses and Dissertations

In this dissertation, a method and a tool to enable design and verification of computation demanding embedded vision-based systems is presented. Starting with an executable specification in OpenCV, we provide subsequent refinements and verification down to a system-on-chip prototype into an FPGA-Based smart camera. At each level of abstraction, properties of image processing applications are used along with structure composition to provide a generic architecture that can be automatically verified and mapped to the lower abstraction level. The result is a framework that encapsulates the computer vision library OpenCV at the highest level, integrates Accelera's System-C/TLM with UVM and QEMU-OS …


Technology Mapping, Design For Testability, And Circuit Optimizations For Null Convention Logic Based Architectures, Farhad Alibeygi Parsan Dec 2014

Technology Mapping, Design For Testability, And Circuit Optimizations For Null Convention Logic Based Architectures, Farhad Alibeygi Parsan

Graduate Theses and Dissertations

Delay-insensitive asynchronous circuits have been the target of a renewed research effort because of the advantages they offer over traditional synchronous circuits. Minimal timing analysis, inherent robustness against power-supply, temperature, and process variations, reduced energy consumption, less noise and EMI emission, and easy design reuse are some of the benefits of these circuits. NULL Convention Logic (NCL) is one of the mainstream asynchronous logic design paradigms that has been shown to be a promising method for designing delay-insensitive asynchronous circuits.

This dissertation investigates new areas in NCL design and test and is made of three sections. The first section discusses …


Optimizing Performance And Scalability On Hybrid Mpsocs, Hongyuan Ding Dec 2014

Optimizing Performance And Scalability On Hybrid Mpsocs, Hongyuan Ding

Graduate Theses and Dissertations

Hardware accelerators are capable of achieving significant performance improvement. But design- ing hardware accelerators lacks the flexibility and the productivity. Combining hardware accelerators with multiprocessor system-on-chip (MPSoC) is an alternative way to balance the flexibility, the productivity, and the performance. However, without appropriate programming model it is still a challenge to achieve parallelism on a hybrid (MPSoC) with with both general-purpose processors and dedicated accelerators. Besides, increasing computation demands with limited power budget require more energy-efficient design without performance degradation in embedded systems and mobile computing platforms. Reconfigurable computing with emerging storage technologies is an alternative to enable the optimization …


Analysis Of Parameter Tuning On Energy Efficiency In Asynchronous Circuits, Justin Thomas Roark Aug 2013

Analysis Of Parameter Tuning On Energy Efficiency In Asynchronous Circuits, Justin Thomas Roark

Graduate Theses and Dissertations

Power and energy consumption are the primary concern of the digital integrated circuit (IC) industry. Asynchronous logic, in the past several years, has increased in popularity due to its low power nature. This thesis analyzes a collection of array multipliers with different parameters to compare two asynchronous design paradigms, NULL Convention Logic (NCL) and Multi-Threshold NULL Convention Logic (MTNCL). Several commercially available pieces of software and custom scripts are used to analyze the asynchronous circuits and their components to provide the energy consumption estimation on various parts of each circuit. The analysis of the software results revealed that MTNCL circuits …


Cad Tool Design For Ncl And Mtncl Asynchronous Circuits, Vijay Mani Pillai Aug 2013

Cad Tool Design For Ncl And Mtncl Asynchronous Circuits, Vijay Mani Pillai

Graduate Theses and Dissertations

This thesis presents an implementation of a method developed to readily convert Boolean designs into an ultra-low power asynchronous design methodology called MTNCL, which combines multi-threshold CMOS (MTCMOS) with NULL Convention Logic (NCL) systems. MTNCL provides the leakage power advantages of an all high-Vt implementation with a reasonable speed penalty compared to the all low-Vt implementation, and has negligible area overhead. The proposed tool utilizes industry-standard CAD tools. This research also presents an Automated Gate-Level Pipelining with Bit-Wise Completion (AGLPBW) method to maximize throughput of delay-insensitive full-word pipelined NCL circuits. These methods have been integrated into the Mentor Graphics and …


Cad Tools For Synthesis Of Sleep Convention Logic, Parviz Palangpour May 2013

Cad Tools For Synthesis Of Sleep Convention Logic, Parviz Palangpour

Graduate Theses and Dissertations

This dissertation proposes an automated flow for the Sleep Convention Logic (SCL) asynchronous design style. The proposed flow synthesizes synchronous RTL into an SCL netlist. The flow utilizes commercial design tools, while supplementing missing functionality using custom tools. A method for determining the performance bottleneck in an SCL design is proposed. A constraint-driven method to increase the performance of linear SCL pipelines is proposed. Several enhancements to SCL are proposed, including techniques to reduce the number of registers and total sleep capacitance in an SCL design.


File System Simulation: Hierarchical Performance Measurement And Modeling, Hai Quang Nguyen Aug 2011

File System Simulation: Hierarchical Performance Measurement And Modeling, Hai Quang Nguyen

Graduate Theses and Dissertations

File systems are very important components in a computer system. File system simulation can help to predict the performance of new system designs. It offers the advantages of the flexibility of modeling and the cost and time savings of utilizing simulation instead of full implementation. Being able to predict end-to-end file system performance against a pre-defined workload can help system designers to make decisions that could affect their entire product line, involving several million dollars of investment. This dissertation presents detailed simulation-based performance models of the Linux ext3 file system and the PVFS parallel file system. The models are developed …


Multi-Threshold Cmos Circuit Design Methodology From 2d To 3d, Ross Josiah Thian Dec 2010

Multi-Threshold Cmos Circuit Design Methodology From 2d To 3d, Ross Josiah Thian

Graduate Theses and Dissertations

A new and exciting approach in digital IC design in order to accommodate the Moore's law is 3D chip stacking. Chip stacking offers more transistors per chip, reduced wire lengths, and increased memory access bandwidths. This thesis demonstrates that traditional 2D design flow can be adapted for 3D chip stacking. 3D chip stacking has a serious drawback: heat generation. Die-on-die architecture reduces exposed surface area for heat dissipation. In order to reduce heat generation, a low power technique named Multi-Threshold CMOS (MTCMOS) was incorporated in this work. MTCMOS required designing a power management unit (to control when and which gates …