Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Computer Engineering

An Optimized And Scalable Blockchain-Based Distributed Learning Platform For Consumer Iot, Zhaocheng Wang, Xueying Liu, Xinming Shao, Abdullah Alghamdi, Md. Shirajum Munir, Sujit Biswas Jan 2023

An Optimized And Scalable Blockchain-Based Distributed Learning Platform For Consumer Iot, Zhaocheng Wang, Xueying Liu, Xinming Shao, Abdullah Alghamdi, Md. Shirajum Munir, Sujit Biswas

School of Cybersecurity Faculty Publications

Consumer Internet of Things (CIoT) manufacturers seek customer feedback to enhance their products and services, creating a smart ecosystem, like a smart home. Due to security and privacy concerns, blockchain-based federated learning (BCFL) ecosystems can let CIoT manufacturers update their machine learning (ML) models using end-user data. Federated learning (FL) uses privacy-preserving ML techniques to forecast customers' needs and consumption habits, and blockchain replaces the centralized aggregator to safeguard the ecosystem. However, blockchain technology (BCT) struggles with scalability and quick ledger expansion. In BCFL, local model generation and secure aggregation are other issues. This research introduces a novel architecture, emphasizing …


Lecture 06: The Impact Of Computer Architectures On The Design Of Algebraic Multigrid Methods, Ulrike Yang Apr 2021

Lecture 06: The Impact Of Computer Architectures On The Design Of Algebraic Multigrid Methods, Ulrike Yang

Mathematical Sciences Spring Lecture Series

Algebraic multigrid (AMG) is a popular iterative solver and preconditioner for large sparse linear systems. When designed well, it is algorithmically scalable, enabling it to solve increasingly larger systems efficiently. While it consists of various highly parallel building blocks, the original method also consisted of various highly sequential components. A large amount of research has been performed over several decades to design new components that perform well on high performance computers. As a matter of fact, AMG has shown to scale well to more than a million processes. However, with single-core speeds plateauing, future increases in computing performance need to …


The Thermal-Constrained Real-Time Systems Design On Multi-Core Platforms -- An Analytical Approach, Shi Sha Mar 2018

The Thermal-Constrained Real-Time Systems Design On Multi-Core Platforms -- An Analytical Approach, Shi Sha

FIU Electronic Theses and Dissertations

Over the past decades, the shrinking transistor size enabled more transistors to be integrated into an IC chip, to achieve higher and higher computing performances. However, the semiconductor industry is now reaching a saturation point of Moore’s Law largely due to soaring power consumption and heat dissipation, among other factors. High chip temperature not only significantly increases packing/cooling cost, degrades system performance and reliability, but also increases the energy consumption and even damages the chip permanently. Although designing 2D and even 3D multi-core processors helps to lower the power/thermal barrier for single-core architectures by exploring the thread/process level parallelism, the …


Evaluating The Presence Of A Victim Cache On An Arm Processor, Lakshmi Vidya Peri Sep 2013

Evaluating The Presence Of A Victim Cache On An Arm Processor, Lakshmi Vidya Peri

Computer Science Graduate Projects and Theses

Mobile processor is a CPU designed to save power. It is found in mobile computers and cell phones. A CPU chip, designed for portable computers, is typically housed in a smaller chip package, but more importantly, in order to run cooler, it uses lower voltages than its desktop counterpart and has more "sleep mode" capability. A mobile processor can be throttled down to different power levels and/or sections of the chip can be turned off entirely when not in use. ARM is a 32-bit reduced instruction set computer (RISC) instruction set architecture (ISA). The relative simplicity of ARM processors makes …


Nato Human View Architecture And Human Networks, Holly A. H. Handley, Nancy P. Houston Mar 2010

Nato Human View Architecture And Human Networks, Holly A. H. Handley, Nancy P. Houston

Engineering Management & Systems Engineering Faculty Publications

The NATO Human View is a system architectural viewpoint that focuses on the human as part of a system. Its purpose is to capture the human requirements and to inform on how the human impacts the system design. The viewpoint contains seven static models that include different aspects of the human element, such as roles, tasks, constraints, training and metrics. It also includes a Human Dynamics component to perform simulations of the human system under design. One of the static models, termed Human Networks, focuses on the human-to-human communication patterns that occur as a result of ad hoc or deliberate …


A Hardware Framework For Yield And Reliability Enhancement In Chip Multiprocessors, Abhisek Pan Jan 2009

A Hardware Framework For Yield And Reliability Enhancement In Chip Multiprocessors, Abhisek Pan

Masters Theses 1911 - February 2014

Device reliability and manufacturability have emerged as dominant concerns in end-of-road CMOS devices. Today an increasing number of hardware failures are attributed to device reliability problems that cause partial system failure or shutdown. Also maintaining an acceptable manufacturing yield is seen as challenge because of smaller feature sizes, process variation, and reduced headroom for burn-in tests. In this project we investigate a hardware-based scheme for improving yield and reliability of a homogeneous chip multiprocessor (CMP). The proposed solution involves a hardware framework that enables us to utilize the redundancies inherent in a multi-core system to keep the system operational in …


A Toolkit For Specializing Production Operating System Code, Crispin Cowan, Dylan Mcnamee, Andrew P. Black, Calton Pu, Jonathan Walpole, Charles Krasic, Perry Wagle, Qian Zhang Jun 1997

A Toolkit For Specializing Production Operating System Code, Crispin Cowan, Dylan Mcnamee, Andrew P. Black, Calton Pu, Jonathan Walpole, Charles Krasic, Perry Wagle, Qian Zhang

Computer Science Faculty Publications and Presentations

Specialization has been recognized as a powerful technique for optimizing operating systems. However, specialization has not been broadly applied beyond the research community because the current techniques, based on manual specialization, are time-consuming and error-prone. This paper describes a specialization toolkit that should help broaden the applicability of specializing operating systems by assisting in the automatic generation of specialized code, and {\em guarding} the specialized code to ensure the specialized system continues to be correct. We demonstrate the effectiveness of the toolkit by describing experiences we have had applying it in real, production environments. We report on our experiences with …


A Study Of Dynamic Optimization Techniques: Lessons And Directions In Kernel Design, Calton Pu, Jonathan Walpole Jan 1993

A Study Of Dynamic Optimization Techniques: Lessons And Directions In Kernel Design, Calton Pu, Jonathan Walpole

Computer Science Faculty Publications and Presentations

The Synthesis kernel [21,22,23,27,28] showed that dynamic code generation, software feedback, and fine-grain modular kernel organization are useful implementation techniques for improving the performance of operating system kernels. In addition, and perhaps more importantly, we discovered that there are strong interactions between the techniques. Hence, a careful and systematic combination of the techniques can be very powerful even though each one by itself may have serious limitations. By identifying these interactions we illustrate the problems of applying each technique in isolation to existing kernels. We also highlight the important common under-pinnings of the Synthesis experience and present our ideas on …