Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Computer Engineering

An Efficient Privacy-Preserving Framework For Video Analytics, Tian Zhou Mar 2024

An Efficient Privacy-Preserving Framework For Video Analytics, Tian Zhou

Doctoral Dissertations

With the proliferation of video content from surveillance cameras, social media, and live streaming services, the need for efficient video analytics has grown immensely. In recent years, machine learning based computer vision algorithms have shown great success in various video analytic tasks. Specifically, neural network models have dominated in visual tasks such as image and video classification, object recognition, object detection, and object tracking. However, compared with classic computer vision algorithms, machine learning based methods are usually much more compute-intensive. Powerful servers are required by many state-of-the-art machine learning models. With the development of cloud computing infrastructures, people are able …


Improving The Programmability Of Networked Energy Systems, Noman Bashir Jun 2022

Improving The Programmability Of Networked Energy Systems, Noman Bashir

Doctoral Dissertations

Global warming and climate change have underscored the need for designing sustainable energy systems. Sustainable energy systems, e.g., smart grids, green data centers, differ from the traditional systems in significant ways and present unique challenges to system designers and operators. First, intermittent renewable energy resources power these systems, which break the notion of infinite, reliable, and controllable power supply. Second, these systems come in varying sizes, spanning over large geographical regions. The control of these dispersed and diverse systems raises scalability challenges. Third, the performance modeling and fault detection in sustainable energy systems is still an active research area. Finally, …


Addressing Security Challenges In Embedded Systems And Multi-Tenant Fpgas, Georgios Provelengios Apr 2021

Addressing Security Challenges In Embedded Systems And Multi-Tenant Fpgas, Georgios Provelengios

Doctoral Dissertations

Embedded systems and field-programmable gate arrays (FPGAs) have become crucial parts of the infrastructure that supports our modern technological world. Given the multitude of threats that are present, the need for secure computing systems is undeniably greater than ever. Embedded systems and FPGAs are governed by characteristics that create unique security challenges and vulnerabilities. Despite their array of uses, embedded systems are often built with modest microprocessors that do not support the conventional security solutions used by workstations, such as virus scanners. In the first part of this dissertation, a microprocessor defense mechanism that uses a hardware monitor to protect …


Design And Implementation Of Path Finding And Verification In The Internet, Hao Cai Jul 2020

Design And Implementation Of Path Finding And Verification In The Internet, Hao Cai

Doctoral Dissertations

In the Internet, network traffic between endpoints typically follows one path that is determined by the control plane. Endpoints have little control over the choice of which path their network traffic takes and little ability to verify if the traffic indeed follows a specific path. With the emergence of software-defined networking (SDN), more control over connections can be exercised, and thus the opportunity for novel solutions exists. However, there remain concerns about the attack surface exposed by fine-grained control, which may allow attackers to inject and redirect traffic. To address these opportunities and concerns, we consider two specific challenges: (1) …


Towards Optimized Traffic Provisioning And Adaptive Cache Management For Content Delivery, Aditya Sundarrajan Mar 2020

Towards Optimized Traffic Provisioning And Adaptive Cache Management For Content Delivery, Aditya Sundarrajan

Doctoral Dissertations

Content delivery networks (CDNs) deploy hundreds of thousands of servers around the world to cache and serve trillions of user requests every day for a diverse set of content such as web pages, videos, software downloads and images. In this dissertation, we propose algorithms to provision traffic across cache servers and manage the content they host to achieve performance objectives such as maximizing the cache hit rate, minimizing the bandwidth cost of the network and minimizing the energy consumption of the servers. Traffic provisioning is the process of determining the set of content domains hosted on the servers. We propose …


Trustworthy Systems And Protocols For The Internet Of Things, Arman Pouraghily Mar 2020

Trustworthy Systems And Protocols For The Internet Of Things, Arman Pouraghily

Doctoral Dissertations

Processor-based embedded systems are integrated into many aspects of everyday life such as industrial control, automotive systems, healthcare, the Internet of Things, etc. As Moore’s law progresses, these embedded systems have moved from simple microcontrollers to full-scale embedded computing systems with multiple processor cores and operating systems support. At the same time, the security of these devices has also become a key concern. Our main focus in this work is the security and privacy of the embedded systems used in IoT systems. In the first part of this work, we take a look at the security of embedded systems from …


Qoe-Aware Content Distribution Systems For Adaptive Bitrate Video Streaming, Divyashri Bhat Mar 2020

Qoe-Aware Content Distribution Systems For Adaptive Bitrate Video Streaming, Divyashri Bhat

Doctoral Dissertations

A prodigious increase in video streaming content along with a simultaneous rise in end system capabilities has led to the proliferation of adaptive bit rate video streaming users in the Internet. Today, video streaming services range from Video-on-Demand services like traditional IP TV to more recent technologies such as immersive 3D experiences for live sports events. In order to meet the demands of these services, the multimedia and networking research community continues to strive toward efficiently delivering high quality content across the Internet while also trying to minimize content storage and delivery costs. The introduction of flexible and adaptable technologies …


A Parallel Direct Method For Finite Element Electromagnetic Computations Based On Domain Decomposition, Javad Moshfegh Nov 2019

A Parallel Direct Method For Finite Element Electromagnetic Computations Based On Domain Decomposition, Javad Moshfegh

Doctoral Dissertations

High performance parallel computing and direct (factorization-based) solution methods have been the two main trends in electromagnetic computations in recent years. When time-harmonic (frequency-domain) Maxwell's equation are directly discretized with the Finite Element Method (FEM) or other Partial Differential Equation (PDE) methods, the resulting linear system of equations is sparse and indefinite, thus harder to efficiently factorize serially or in parallel than alternative methods e.g. integral equation solutions, that result in dense linear systems. State-of-the-art sparse matrix direct solvers such as MUMPS and PARDISO don't scale favorably, have low parallel efficiency and high memory footprint. This work introduces a new …


Cmos Compatible Memristor Networks For Brain-Inspired Computing, Can Li Nov 2018

Cmos Compatible Memristor Networks For Brain-Inspired Computing, Can Li

Doctoral Dissertations

In the past decades, the computing capability has shown an exponential growth trend, which is observed as Moore’s law. However, this growth speed is slowing down in recent years mostly because the down-scaled size of transistors is approaching their physical limit. On the other hand, recent advances in software, especially in big data analysis and artificial intelligence, call for a break-through in computing hardware. The memristor, or the resistive switching device, is believed to be a potential building block of the future generation of integrated circuits. The underlying mechanism of this device is different from that of complementary metal-oxide-semiconductor (CMOS) …


Transiency-Driven Resource Management For Cloud Computing Platforms, Prateek Sharma Oct 2018

Transiency-Driven Resource Management For Cloud Computing Platforms, Prateek Sharma

Doctoral Dissertations

Modern distributed server applications are hosted on enterprise or cloud data centers that provide computing, storage, and networking capabilities to these applications. These applications are built using the implicit assumption that the underlying servers will be stable and normally available, barring for occasional faults. In many emerging scenarios, however, data centers and clouds only provide transient, rather than continuous, availability of their servers. Transiency in modern distributed systems arises in many contexts, such as green data centers powered using renewable intermittent sources, and cloud platforms that provide lower-cost transient servers which can be unilaterally revoked by the cloud operator. Transient …


Hybrid Black-Box Solar Analytics And Their Privacy Implications, Dong Chen Oct 2018

Hybrid Black-Box Solar Analytics And Their Privacy Implications, Dong Chen

Doctoral Dissertations

The aggregate solar capacity in the U.S. is rising rapidly due to continuing decreases in the cost of solar modules. For example, the installed cost per Watt (W) for residential photovoltaics (PVs) decreased by 6X from 2009 to 2018 (from $8/W to $1.2/W), resulting in the installed aggregate solar capacity increasing 128X from 2009 to 2018 (from 435 megawatts to 55.9 gigawatts). This increasing solar capacity is imposing operational challenges on utilities in balancing electricity's real-time supply and demand, as solar generation is more stochastic and less predictable than aggregate demand. To address this problem, both academia and utilities have …


An Architecture Evaluation And Implementation Of A Soft Gpgpu For Fpgas, Kevin Andryc Oct 2018

An Architecture Evaluation And Implementation Of A Soft Gpgpu For Fpgas, Kevin Andryc

Doctoral Dissertations

Embedded and mobile systems must be able to execute a variety of different types of code, often with minimal available hardware. Many embedded systems now come with a simple processor and an FPGA, but not more energy-hungry components, such as a GPGPU. In this dissertation we present FlexGrip, a soft architecture which allows for the execution of GPGPU code on an FPGA without the need to recompile the design. The architecture is optimized for FPGA implementation to effectively support the conditional and thread-based execution characteristics of GPGPU execution without FPGA design recompilation. This architecture supports direct CUDA compilation to a …


Adaft: A Resource-Efficient Framework For Adaptive Fault-Tolerance In Cyber-Physical Systems, Ye Xu Nov 2017

Adaft: A Resource-Efficient Framework For Adaptive Fault-Tolerance In Cyber-Physical Systems, Ye Xu

Doctoral Dissertations

Cyber-physical systems frequently have to use massive redundancy to meet application requirements for high reliability. While such redundancy is required, it can be activated adaptively, based on the current state of the controlled plant. Most of the time the physical plant is in a state that allows for a lower level of fault-tolerance. Avoiding the continuous deployment of massive fault-tolerance will greatly reduce the workload of CPSs. In this dissertation, we demonstrate a software simulation framework (AdaFT) that can automatically generate the sub-spaces within which our adaptive fault-tolerance can be applied. We also show the theoretical benefits of AdaFT, and …


Skybridge: A New Nanoscale 3-D Computing Framework For Future Integrated Circuits, Mostafizur Rahman Nov 2015

Skybridge: A New Nanoscale 3-D Computing Framework For Future Integrated Circuits, Mostafizur Rahman

Doctoral Dissertations

Continuous scaling of CMOS has been the major catalyst in miniaturization of integrated circuits (ICs) and crucial for global socio-economic progress. However, continuing the traditional way of scaling to sub-20nm technologies is proving to be very difficult as MOSFETs are reaching their fundamental performance limits [1] and interconnection bottleneck is dominating IC operational power and performance [2]. Migrating to 3-D, as a way to advance scaling, has been elusive due to inherent customization and manufacturing requirements in CMOS architecture that are incompatible with 3-D organization. Partial attempts with die-die [3] and layer-layer [4] stacking have their own limitations [5]. We …


On Thermal Sensor Calibration And Software Techniques For Many-Core Thermal Management, Shiting Lu Nov 2015

On Thermal Sensor Calibration And Software Techniques For Many-Core Thermal Management, Shiting Lu

Doctoral Dissertations

The high power density of a many-core processor results in increased temperature which negatively impacts system reliability and performance. Dynamic thermal management applies thermal-aware techniques at run time to avoid overheating using temperature information collected from on-chip thermal sensors. Temperature sensing and thermal control schemes are two critical technologies for successfully maintaining thermal safety. In this dissertation, on-line thermal sensor calibration schemes are developed to provide accurate temperature information. Software-based dynamic thermal management techniques are proposed using calibrated thermal sensors. Due to process variation and silicon aging, on-chip thermal sensors require periodic calibration before use in DTM. However, the calibration …


Design And Implementation Of An Economy Plane For The Internet, Xinming Chen Nov 2015

Design And Implementation Of An Economy Plane For The Internet, Xinming Chen

Doctoral Dissertations

The Internet has been very successful in supporting many network applications. As the diversity of uses for the Internet has increased, many protocols and services have been developed by the industry and the research community. However, many of them failed to get deployed in the Internet. One challenge of deploying these novel ideas in operational network is that the network providers need to be involved in the process. Many novel network protocols and services, like multicast and end-to-end QoS, need the support from network providers. However, since network providers are typically driven by business reasons, if they can not get …


Physically Equivalent Intelligent Systems For Reasoning Under Uncertainty At Nanoscale, Santosh Khasanvis Nov 2015

Physically Equivalent Intelligent Systems For Reasoning Under Uncertainty At Nanoscale, Santosh Khasanvis

Doctoral Dissertations

Machines today lack the inherent ability to reason and make decisions, or operate in the presence of uncertainty. Machine-learning methods such as Bayesian Networks (BNs) are widely acknowledged for their ability to uncover relationships and generate causal models for complex interactions. However, their massive computational requirement, when implemented on conventional computers, hinders their usefulness in many critical problem areas e.g., genetic basis of diseases, macro finance, text classification, environment monitoring, etc. We propose a new non-von Neumann technology framework purposefully architected across all layers for solving these problems efficiently through physical equivalence, enabled by emerging nanotechnology. The architecture builds …


Reliable And Efficient Multithreading, Tongping Liu Aug 2014

Reliable And Efficient Multithreading, Tongping Liu

Doctoral Dissertations

The advent of multicore architecture has increased the demand for multithreaded programs. It is notoriously far more challenging to write parallel programs correctly and efficiently than sequential ones because of the wide range of concurrency errors and performance problems. In this thesis, I developed a series of runtime systems and tools to combat concurrency errors and performance problems of multithreaded programs. The first system, Dthreads, automatically ensures determinism for unmodified C/C++ applications using the pthreads library without requiring programmer intervention and hardware support. Dthreads greatly simplifies the understanding and debugging of multithreaded programs. Dthreads often matches or even exceeds the …


Parallel Multi-Core Verilog Hdl Simulation, Tariq B. Ahmad Aug 2014

Parallel Multi-Core Verilog Hdl Simulation, Tariq B. Ahmad

Doctoral Dissertations

In the era of multi-core computing, the push for creating true parallel applications that can run on individual CPUs is on the rise. Application of parallel discrete event simulation (PDES) to hardware design verification looks promising, given the complexity of today’s hardware designs. Unfortunately, the challenges imposed by lack of inherent parallelism, suboptimal design partitioning, synchronization and communication overhead, and load balancing, render this approach largely ineffective. This thesis presents three techniques for accelerating simulation at three levels of abstraction namely, RTL, functional gate-level (zero-delay) and gate-level timing. We review contemporary solutions and then propose new ways of speeding up …