Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

Theses/Dissertations

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 696

Full-Text Articles in Computer Engineering

Developing 5gl Concepts From User Interactions, David Stuckless Meyer Jul 2019

Developing 5gl Concepts From User Interactions, David Stuckless Meyer

Masters Theses

In the fulfilling of the contracts generated in Test Driven Development, a developer could be said to act as a constraint solver, similar to those used by a 5th Generation Language(5GL). This thesis presents the hypothesis that 5GL linguistic mechanics, such as facts, rules and goals, will be emergent in the communications of developer pairs performing Test Driven Development, validating that 5GL syntax is congruent with the ways that practitioners communicate. Along the way, nomenclatures and linguistic patterns may be observed that could inform the design of future 5GL languages.


Grammar-Based Procedurally Generated Village Creation Tool, Kevin Matthew Graves Jun 2019

Grammar-Based Procedurally Generated Village Creation Tool, Kevin Matthew Graves

Computer Engineering

This project is a 3D village generator tool for Unity. It consists of three components: a building, mountain, and river generator. All of these generators use grammar-based procedural generation in order to create a unique and logical village and landscape each time the program is run.


Labeling Paths With Convolutional Neural Networks, Sean Wallace, Kyle Wuerch Jun 2019

Labeling Paths With Convolutional Neural Networks, Sean Wallace, Kyle Wuerch

Computer Engineering

With the increasing development of autonomous vehicles, being able to detect driveable paths in arbitrary environments has become a prevalent problem in multiple industries. This project explores a technique which utilizes a discretized output map that is used to color an image based on the confidence that each block is a driveable path. This was done using a generalized convolutional neural network that was trained on a set of 3000 images taken from the perspective of a robot along with matching masks marking which portion of the image was a driveable path. The techniques used allowed for a labeling accuracy ...


Identifying Hourly Traffic Patterns With Python Deep Learning, Christopher L. Leavitt Jun 2019

Identifying Hourly Traffic Patterns With Python Deep Learning, Christopher L. Leavitt

Computer Engineering

This project was designed to explore and analyze the potential abilities and usefulness of applying machine learning models to data collected by parking sensors at a major metro shopping mall. By examining patterns in rates at which customer enter and exit parking garages on the campus of the Bellevue Collection shopping mall in Bellevue, Washington, a recurrent neural network will use data points from the previous hours will be trained to forecast future trends.


Reach - A Community Service Application, Samuel Noel Magana Jun 2019

Reach - A Community Service Application, Samuel Noel Magana

Computer Engineering

Communities are familiar threads that unite people through several shared attributes and interests. These commonalities are the core elements that link and bond us together. Many of us are part of multiple communities, moving in and out of them depending on our needs. These common threads allow us to support and advocate for each other when facing a common threat or difficult situation. Healthy and vibrant communities are fundamental to the operation of our society. These interactions within our communities define the way we as individuals interact with each other, and society at large. Being part of a community helps ...


Exploring The Behavior Repertoire Of A Wireless Vibrationally Actuated Tensegrity Robot, Zongliang Ji Jun 2019

Exploring The Behavior Repertoire Of A Wireless Vibrationally Actuated Tensegrity Robot, Zongliang Ji

Honors Theses

Soft robotics is an emerging field of research due to its potential to explore and operate in unstructured, rugged, and dynamic environments. However, the properties that make soft robots compelling also make them difficult to robustly control. Here at Union, we developed the world’s first wireless soft tensegrity robot. The goal of my thesis is to explore effective and efficient methods to explore the diverse behavior our tensegrity robot. We will achieve that by applying state-of-art machine learning technique and a novelty search algorithm.


Management And Security Of Multi-Cloud Applications, Lav Gupta May 2019

Management And Security Of Multi-Cloud Applications, Lav Gupta

Engineering and Applied Science Theses & Dissertations

Single cloud management platform technology has reached maturity and is quite successful in information technology applications. Enterprises and application service providers are increasingly adopting a multi-cloud strategy to reduce the risk of cloud service provider lock-in and cloud blackouts and, at the same time, get the benefits like competitive pricing, the flexibility of resource provisioning and better points of presence. Another class of applications that are getting cloud service providers increasingly interested in is the carriers' virtualized network services. However, virtualized carrier services require high levels of availability and performance and impose stringent requirements on cloud services. They necessitate the ...


Hardware Ip Classification Through Weighted Characteristics, Brendan Mcgeehan May 2019

Hardware Ip Classification Through Weighted Characteristics, Brendan Mcgeehan

Theses and Dissertations

Today’s business model for hardware designs frequently incorporates third-party Intellectual Property (IP) due to the many benefits it can bring to a company. For instance, outsourcing certain components of an overall design can reduce time-to-market by allowing each party to specialize and perfect a specific part of the overall design. However, allowing third-party involvement also increases the possibility of malicious attacks, such as hardware Trojan insertion. Trojan insertion is a particularly dangerous security threat because testing the functionality of an IP can often leave the Trojan undetected. Therefore, this thesis work provides an improvement on a Trojan detection method ...


An Explainable Sequence-Based Deep Learning Predictor With Applications To Song Recommendation And Text Classification., Khalil Damak May 2019

An Explainable Sequence-Based Deep Learning Predictor With Applications To Song Recommendation And Text Classification., Khalil Damak

Electronic Theses and Dissertations

Streaming applications are now the predominant tools for listening to music. What makes the success of such software is the availability of songs and especially their ability to provide users with relevant personalized recommendations. State of the art music recommender systems mainly rely on either Matrix factorization-based collaborative filtering approaches or deep learning architectures. Deep learning models usually use metadata for content-based filtering or predict the next user interaction (listening to a song) using a memory-based deep learning structure that learns from temporal sequences of user actions. Despite advances in deep learning models for song recommendation systems, none has taken ...


Applications Of Fog Computing In Video Streaming, Kyle Smith May 2019

Applications Of Fog Computing In Video Streaming, Kyle Smith

Computer Science and Computer Engineering Undergraduate Honors Theses

The purpose of this paper is to show the viability of fog computing in the area of video streaming in vehicles. With the rise of autonomous vehicles, there needs to be a viable entertainment option for users. The cloud fails to address these options due to latency problems experienced during high internet traffic. To improve video streaming speeds, fog computing seems to be the best option. Fog computing brings the cloud closer to the user through the use of intermediary devices known as fog nodes. It does not attempt to replace the cloud but improve the cloud by allowing faster ...


Cyber Security- A New Secured Password Generation Algorithm With Graphical Authentication And Alphanumeric Passwords Along With Encryption, Akash Rao Apr 2019

Cyber Security- A New Secured Password Generation Algorithm With Graphical Authentication And Alphanumeric Passwords Along With Encryption, Akash Rao

Electrical & Computer Engineering Theses & Disssertations

Graphical passwords are always considered as an alternative of alphanumeric passwords for their better memorability and usability [1]. Alphanumeric passwords provide an adequate amount of satisfaction, but they do not offer better memorability compared to graphical passwords [1].

On the other hand, graphical passwords are considered less secured and provide better memorability [1]. Therefore many researchers have researched on graphical passwords to overcome the vulnerability. One of the most significant weaknesses of the graphical passwords is "Shoulder Surfing Attack," which means, sneaking into a victim's computer to learn the whole password or part of password or some confidential information ...


A Framework For Test & Evaluation Of Autonomous Systems Along The Virtuality-Reality Spectrum, Nathan D. Gonda Apr 2019

A Framework For Test & Evaluation Of Autonomous Systems Along The Virtuality-Reality Spectrum, Nathan D. Gonda

Computational Modeling and Simulation Engineering Theses & Dissertations

Test & Evaluation of autonomous vehicles presents a challenge as the vehicles may have emergent behavior and it is frequently difficult to ascertain the reason for software decisions. Current Test & Evaluation approaches for autonomous systems place the vehicles in various operating scenarios to observe their behavior. However, this introduces dependencies between design and development lifecycle of the autonomous software and physical vehicle hardware. Simulation-based testing can alleviate the necessity to have physical hardware; however, it can be costly when transitioning the autonomous software to and from a simulation testing environment. The objective of this thesis is to develop a reusable framework for testing autonomous software such that testing can be conducted at various levels of mixed reality provided the framework components are sufficient to support data required by the autonomous software. The paper describes the design of the software framework and explores its application through use cases.


Instantaneous Bandwidth Expansion Using Software Defined Radios, Nicholas D. Everett Mar 2019

Instantaneous Bandwidth Expansion Using Software Defined Radios, Nicholas D. Everett

Theses and Dissertations

The Stimulated Unintended Radiated Emissions (SURE) process has been proven capable of classifying a device (e.g. a loaded antenna) as either operational or defective. Currently, the SURE process utilizes a specialized noise radar which is bulky, expensive and not easily supported. With current technology advancements, Software Defined Radios (SDRs) have become more compact, more readily available and significantly cheaper. The research here examines whether multiple SDRs can be integrated to replace the current specialized ultra-wideband noise radar used with the SURE process. The research specifically targets whether or not multiple SDR sub-band collections can be combined to form a ...


Near Real-Time Rf-Dna Fingerprinting For Zigbee Devices Using Software Defined Radios, Frankie A. Cruz Mar 2019

Near Real-Time Rf-Dna Fingerprinting For Zigbee Devices Using Software Defined Radios, Frankie A. Cruz

Theses and Dissertations

Low-Rate Wireless Personal Area Network(s) (LR-WPAN) usage has increased as more consumers embrace Internet of Things (IoT) devices. ZigBee Physical Layer (PHY) is based on the Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 specification designed to provide a low-cost, low-power, and low-complexity solution for Wireless Sensor Network(s) (WSN). The standard’s extended battery life and reliability makes ZigBee WSN a popular choice for home automation, transportation, traffic management, Industrial Control Systems (ICS), and cyber-physical systems. As robust and versatile as the standard is, ZigBee remains vulnerable to a myriad of common network attacks. Previous research ...


Confidence Inference In Defensive Cyber Operator Decision Making, Graig S. Ganitano Mar 2019

Confidence Inference In Defensive Cyber Operator Decision Making, Graig S. Ganitano

Theses and Dissertations

Cyber defense analysts face the challenge of validating machine generated alerts regarding network-based security threats. Operations tempo and systematic manpower issues have increased the importance of these individual analyst decisions, since they typically are not reviewed or changed. Analysts may not always be confident in their decisions. If confidence can be accurately assessed, then analyst decisions made under low confidence can be independently reviewed and analysts can be offered decision assistance or additional training. This work investigates the utility of using neurophysiological and behavioral correlates of decision confidence to train machine learning models to infer confidence in analyst decisions. Electroencephalography ...


A Blockchain-Based Anomalous Detection System For Internet Of Things Devices, Joshua K. Mosby Mar 2019

A Blockchain-Based Anomalous Detection System For Internet Of Things Devices, Joshua K. Mosby

Theses and Dissertations

Internet of Things devices are highly susceptible to attack, and owners often fail to realize they have been compromised. This thesis describes an anomalous-based intrusion detection system that operates directly on Internet of Things devices utilizing a custom-built Blockchain. In this approach, an agent on each node compares the node's behavior to that of its peers, generating an alert if they are behaving differently. An experiment is conducted to determine the effectiveness at detecting malware. Three different code samples simulating common malware are deployed against a testbed of 12 Raspberry Pi devices. Increasing numbers are infected until two-thirds of ...


Decision Making Protocol In Autonomous Vehicles For Optimal Routing And Safe Control, Lakhan Shiva Kamireddy Jan 2019

Decision Making Protocol In Autonomous Vehicles For Optimal Routing And Safe Control, Lakhan Shiva Kamireddy

Electrical Engineering Graduate Theses & Dissertations

We analyze two significant decision-making problems namely planning and control in an autonomous driving scenario with an objective of not only improving the safety of drives but also enhancing the vehicle’s capability to make better decisions. We model the decision-making problem of routing in autonomous vehicles and solve for an optimal route when a vehicle approaches an intersection. The proposed solution attempts to balance the congestion in the traffic network, considering the selfish nature of the vehicles. We also analyze decision-making at the level of control and communications. The choices of the framework we use, to model the communication ...


A Compiler Target Model For Line Associative Registers, Paul S. Eberhart Jan 2019

A Compiler Target Model For Line Associative Registers, Paul S. Eberhart

Theses and Dissertations--Electrical and Computer Engineering

LARs (Line Associative Registers) are very wide tagged registers, used for both register-wide SWAR (SIMD Within a Register )operations and scalar operations on arbitrary fields. LARs include a large data field, type tags, source addresses, and a dirty bit, which allow them to not only replace both caches and registers in the conventional memory hierarchy, but improve on both their functions. This thesis details a LAR-based architecture, and describes the design of a compiler which can generate code for a LAR-based design. In particular, type conversion, alignment, and register allocation are discussed in detail.


Procure-To-Pay Software In The Digital Age: An Exploration And Analysis Of Efficiency Gains And Cybersecurity Risks In Modern Procurement Systems, Drew Lane Jan 2019

Procure-To-Pay Software In The Digital Age: An Exploration And Analysis Of Efficiency Gains And Cybersecurity Risks In Modern Procurement Systems, Drew Lane

MPA/MPP Capstone Projects

Procure-to-Pay (P2P) softwares are an integral part of the payment and procurement processing functions at large-scale governmental institutions. These softwares house all of the financial functions related to procurement, accounts payable, and often human resources, helping to facilitate and automate the process from initiation of a payment or purchase, to the actual disbursal of funds. Often, these softwares contain budgeting and financial reporting tools as part of the offering. As such an integral part of the financial process, these softwares obviously come at an immense cost from a set of reputable vendors. In the case of government, these vendors mainly ...


Tactile Perception And Visuotactile Integration For Robotic Exploration, Mabel Zhang Jan 2019

Tactile Perception And Visuotactile Integration For Robotic Exploration, Mabel Zhang

Publicly Accessible Penn Dissertations

As the close perceptual sibling of vision, the sense of touch has historically received less than deserved attention in both human psychology and robotics. In robotics, this may be attributed to at least two reasons. First, it suffers from the vicious cycle of immature sensor technology, which causes industry demand to be low, and then there is even less incentive to make existing sensors in research labs easy to manufacture and marketable. Second, the situation stems from a fear of making contact with the environment, avoided in every way so that visually perceived states do not change before a carefully ...


Visual Perception For Robotic Spatial Understanding, Jason Lawrence Owens Jan 2019

Visual Perception For Robotic Spatial Understanding, Jason Lawrence Owens

Publicly Accessible Penn Dissertations

Humans understand the world through vision without much effort. We perceive the structure, objects, and people in the environment and pay little direct attention to most of it, until it becomes useful. Intelligent systems, especially mobile robots, have no such biologically engineered vision mechanism to take for granted. In contrast, we must devise algorithmic methods of taking raw sensor data and converting it to something useful very quickly. Vision is such a necessary part of building a robot or any intelligent system that is meant to interact with the world that it is somewhat surprising we don't have off-the-shelf ...


A Topic Modeling Approach For Code Clone Detection, Mohammed Salman Khan Jan 2019

A Topic Modeling Approach For Code Clone Detection, Mohammed Salman Khan

UNF Graduate Theses and Dissertations

In this thesis work, the potential benefits of Latent Dirichlet Allocation (LDA) as a technique for code clone detection has been described. The objective is to propose a language-independent, effective, and scalable approach for identifying similar code fragments in relatively large software systems. The main assumption is that the latent topic structure of software artifacts gives an indication of the presence of code clones. It can be hypothesized that artifacts with similar topic distributions contain duplicated code fragments and to prove this hypothesis, an experimental investigation using multiple datasets from various application domains were conducted. In addition, CloneTM, an LDA-based ...


Dedicated Hardware For Machine/Deep Learning: Domain Specific Architectures, Angel Izael Solis Jan 2019

Dedicated Hardware For Machine/Deep Learning: Domain Specific Architectures, Angel Izael Solis

Open Access Theses & Dissertations

Artificial intelligence has come a very long way from being a mere spectacle on the silver screen in the 1920s [Hml18]. As artificial intelligence continues to evolve, and we begin to develop more sophisticated Artificial Neural Networks, the need for specialized and more efficient machines (less computational strain while maintaining the same performance results) becomes increasingly evident. Though these “new” techniques, such as Multilayer Perceptron’s, Convolutional Neural Networks and Recurrent Neural Networks, may seem as if they are on the cutting edge of technology, many of these ideas are over 60 years old! However, many of these earlier models ...


Abnormality Management In Spatial Crowdsourcing For Multi-Skilled Workers Assignment, Srinandan Kota Jan 2019

Abnormality Management In Spatial Crowdsourcing For Multi-Skilled Workers Assignment, Srinandan Kota

Creative Components

Crowdsourcing is dependent on a number of skilled workers who are needed to accomplish spatial tasks. This has been an active area of research and is gaining wide popularity now. Most of these tasks can be completed online due to convenience, but this method fails when there is a need of completing a task at actual physical locations. This has led to a new area called Spatial crowd sourcing that consists of location-specific tasks that require people who can accomplish them to physically arrive at specific locations. The tasks which require specific skillsets, completion times or other constraints are matched ...


Embedding Runtime Verification Post-Deployment For Real-Time Health Management Of Safety-Critical Systems, Brian Christopher Schwinkendorf Kempa Jan 2019

Embedding Runtime Verification Post-Deployment For Real-Time Health Management Of Safety-Critical Systems, Brian Christopher Schwinkendorf Kempa

Graduate Theses and Dissertations

As cyber-physical systems increase in both complexity and criticality, formal methods have gained traction for design-time verification of safety properties.

A lightweight formal method, runtime verification (RV), embeds checks necessary for safety-critical system health management; however, these techniques have been slow to appear in practice despite repeated calls by both industry and academia to leverage them.

Additionally, the state-of-the-art in RV lacks a best practice approach when a deployed system requires increased flexibility due to a change in mission, or in response to an emergent condition not accounted for at design time.

Human-robot interaction necessitates stringent safety guarantees to protect ...


Implementation Of Image Quality Assessment Algorithms For Descriptive Statistics And Deep Learning On Stegoappdb, Venkata Bhanu Chowdary Allada Jan 2019

Implementation Of Image Quality Assessment Algorithms For Descriptive Statistics And Deep Learning On Stegoappdb, Venkata Bhanu Chowdary Allada

Creative Components

No abstract provided.


Secured Data Masking Framework And Technique For Preserving Privacy In A Business Intelligence Analytics Platform, Osama Ali Dec 2018

Secured Data Masking Framework And Technique For Preserving Privacy In A Business Intelligence Analytics Platform, Osama Ali

Electronic Thesis and Dissertation Repository

The main concept behind business intelligence (BI) is how to use integrated data across different business systems within an enterprise to make strategic decisions. It is difficult to map internal and external BI’s users to subsets of the enterprise’s data warehouse (DW), resulting that protecting the privacy of this data while maintaining its utility is a challenging task. Today, such DW systems constitute one of the most serious privacy breach threats that an enterprise might face when many internal users of different security levels have access to BI components. This thesis proposes a data masking framework (iMaskU: Identify ...


Automatic Performance Optimization On Heterogeneous Computer Systems Using Manycore Coprocessors, Chenggang Lai Dec 2018

Automatic Performance Optimization On Heterogeneous Computer Systems Using Manycore Coprocessors, Chenggang Lai

Theses and Dissertations

Emerging computer architectures and advanced computing technologies, such as Intel’s Many Integrated Core (MIC) Architecture and graphics processing units (GPU), provide a promising solution to employ parallelism for achieving high performance, scalability and low power consumption. As a result, accelerators have become a crucial part in developing supercomputers. Accelerators usually equip with different types of cores and memory. It will compel application developers to reach challenging performance goals. The added complexity has led to the development of task-based runtime systems, which allow complex computations to be expressed as task graphs, and rely on scheduling algorithms to perform load balancing ...


A Transfer Learning Approach For Sentiment Classification., Omar Abdelwahab Dec 2018

A Transfer Learning Approach For Sentiment Classification., Omar Abdelwahab

Electronic Theses and Dissertations

The idea of developing machine learning systems or Artificial Intelligence agents that would learn from different tasks and be able to accumulate that knowledge with time so that it functions successfully on a new task that it has not seen before is an idea and a research area that is still being explored. In this work, we will lay out an algorithm that allows a machine learning system or an AI agent to learn from k different domains then uses some or no data from the new task for the system to perform strongly on that new task. In order ...


Feature-Based Transfer Learning In Natural Language Processing, Jianfei Yu Dec 2018

Feature-Based Transfer Learning In Natural Language Processing, Jianfei Yu

Dissertations and Theses Collection (Open Access)

In the past few decades, supervised machine learning approach is one of the most important methodologies in the Natural Language Processing (NLP) community. Although various kinds of supervised learning methods have been proposed to obtain the state-of-the-art performance across most NLP tasks, the bottleneck of them lies in the heavy reliance on the large amount of manually annotated data, which is not always available in our desired target domain/task. To alleviate the data sparsity issue in the target domain/task, an attractive solution is to find sufficient labeled data from a related source domain/task. However, for most NLP ...