Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

Series

2014

Reliability

Articles 1 - 2 of 2

Full-Text Articles in Computer Engineering

Ultimate Codes: Near-Optimal Mds Array Codes For Raid-6, Zhijie Huang, Hong Jiang, Chong Wang, Ke Zhou, Yuhong Zhao Jul 2014

Ultimate Codes: Near-Optimal Mds Array Codes For Raid-6, Zhijie Huang, Hong Jiang, Chong Wang, Ke Zhou, Yuhong Zhao

CSE Technical Reports

As modern storage systems have grown in size and complexity, RAID-6 is poised to replace RAID-5 as the dominant form of RAID architectures due to its ability to protect against double disk failures. Many excellent erasure codes specially designed for RAID-6 have emerged in recent years. However, all of them have limitations. In this paper, we present a class of near perfect erasure codes for RAID-6, called the Ultimate codes. These codes encode, update and decode either optimally or nearly optimally, regardless of what the code length is. This implies that utilizing these codes we can build highly efficient and …


S-Code: Lowest Density Mds Array Codes For Raid-6, Zhijie Huang, Hong Jiang, Ke Zhou, Yuhong Zhao, Chong Wang Jul 2014

S-Code: Lowest Density Mds Array Codes For Raid-6, Zhijie Huang, Hong Jiang, Ke Zhou, Yuhong Zhao, Chong Wang

CSE Technical Reports

RAID, a storage architecture designed to exploit I/O parallelism and provide data reliability, has been deployed widely in computing systems as a storage building block. In large scale storage systems, in particular, RAID-6 is gradually replacing RAID-5 as the dominant form of disk arrays due to its capability of tolerating concurrent failures of any two disks. MDS (maximum distance separable) array codes are the most popular erasure codes that can be used for implementing RAID-6, since they enable optimal storage efficiency and efficient encoding and decoding algorithms. In this paper, we propose a new class of MDS array codes called …