Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

Computer Science Faculty Publications and Presentations

2015

Database management

Articles 1 - 2 of 2

Full-Text Articles in Computer Engineering

S-Store: Streaming Meets Transaction Processing, John Meehan, Nesime Tatbul, Cansu Aslantas, Ugur Cetintemel, Jiang Du, Tim Kraska, Samuel Madden, David Maier, Andrew Pavlo, Michael Stonebraker, Kristin A. Tufte, Hao Wang Jan 2015

S-Store: Streaming Meets Transaction Processing, John Meehan, Nesime Tatbul, Cansu Aslantas, Ugur Cetintemel, Jiang Du, Tim Kraska, Samuel Madden, David Maier, Andrew Pavlo, Michael Stonebraker, Kristin A. Tufte, Hao Wang

Computer Science Faculty Publications and Presentations

Stream processing addresses the needs of real-time applications. Transaction processing addresses the coordination and safety of short atomic computations. Heretofore, these two modes of operation existed in separate, stove-piped systems. In this work, we attempt to fuse the two computational paradigms in a single system called S-Store. In this way, S-Store can simultaneously accommodate OLTP and streaming applications. We present a simple transaction model for streams that integrates seamlessly with a traditional OLTP system. We chose to build S-Store as an extension of H-Store, an open-source, in-memory, distributed OLTP database system. By implementing S-Store in this way, we can make …


A Theory Of Name Resolution, Pierre Néron, Andrew Tolmach, Eelco Visser, Guido Wachsmuth Jan 2015

A Theory Of Name Resolution, Pierre Néron, Andrew Tolmach, Eelco Visser, Guido Wachsmuth

Computer Science Faculty Publications and Presentations

We describe a language-independent theory for name binding and resolution, suitable for programming languages with complex scoping rules including both lexical scoping and modules. We formulate name resolution as a two-stage problem. First a language-independent scope graph is constructed using language-specific rules from an abstract syntax tree. Then references in the scope graph are resolved to corresponding declarations using a language-independent resolution process. We introduce a resolution calculus as a concise, declarative, and language- independent specification of name resolution. We develop a resolution algorithm that is sound and complete with respect to the calculus. Based on the resolution calculus we …