Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Computer Engineering

An Efficient Privacy-Preserving Framework For Video Analytics, Tian Zhou Mar 2024

An Efficient Privacy-Preserving Framework For Video Analytics, Tian Zhou

Doctoral Dissertations

With the proliferation of video content from surveillance cameras, social media, and live streaming services, the need for efficient video analytics has grown immensely. In recent years, machine learning based computer vision algorithms have shown great success in various video analytic tasks. Specifically, neural network models have dominated in visual tasks such as image and video classification, object recognition, object detection, and object tracking. However, compared with classic computer vision algorithms, machine learning based methods are usually much more compute-intensive. Powerful servers are required by many state-of-the-art machine learning models. With the development of cloud computing infrastructures, people are able …


Enabling Daily Tracking Of Individual’S Cognitive State With Eyewear, Soha Rostaminia Oct 2022

Enabling Daily Tracking Of Individual’S Cognitive State With Eyewear, Soha Rostaminia

Doctoral Dissertations

Research studies show that sleep deprivation causes severe fatigue, impairs attention and decision making, and affects our emotional interpretation of events, which makes it a big threat to public safety, and mental and physical well-being. Hence, it would be most desired if we could continuously measure one’s drowsiness and fatigue level, their emotion while making decisions, and assess their sleep quality in order to provide personalized feedback or actionable behavioral suggestions to modulate sleep pattern and alertness levels with the aim of enhancing performance, well-being, and quality of life. While there have been decades of studies on wearable devices, we …


Improving The Programmability Of Networked Energy Systems, Noman Bashir Jun 2022

Improving The Programmability Of Networked Energy Systems, Noman Bashir

Doctoral Dissertations

Global warming and climate change have underscored the need for designing sustainable energy systems. Sustainable energy systems, e.g., smart grids, green data centers, differ from the traditional systems in significant ways and present unique challenges to system designers and operators. First, intermittent renewable energy resources power these systems, which break the notion of infinite, reliable, and controllable power supply. Second, these systems come in varying sizes, spanning over large geographical regions. The control of these dispersed and diverse systems raises scalability challenges. Third, the performance modeling and fault detection in sustainable energy systems is still an active research area. Finally, …


Design And Implementation Of Path Finding And Verification In The Internet, Hao Cai Jul 2020

Design And Implementation Of Path Finding And Verification In The Internet, Hao Cai

Doctoral Dissertations

In the Internet, network traffic between endpoints typically follows one path that is determined by the control plane. Endpoints have little control over the choice of which path their network traffic takes and little ability to verify if the traffic indeed follows a specific path. With the emergence of software-defined networking (SDN), more control over connections can be exercised, and thus the opportunity for novel solutions exists. However, there remain concerns about the attack surface exposed by fine-grained control, which may allow attackers to inject and redirect traffic. To address these opportunities and concerns, we consider two specific challenges: (1) …


Function And Dissipation In Finite State Automata - From Computing To Intelligence And Back, Natesh Ganesh Oct 2019

Function And Dissipation In Finite State Automata - From Computing To Intelligence And Back, Natesh Ganesh

Doctoral Dissertations

Society has benefited from the technological revolution and the tremendous growth in computing powered by Moore's law. However, we are fast approaching the ultimate physical limits in terms of both device sizes and the associated energy dissipation. It is important to characterize these limits in a physically grounded and implementation-agnostic manner, in order to capture the fundamental energy dissipation costs associated with performing computing operations with classical information in nano-scale quantum systems. It is also necessary to identify and understand the effect of quantum in-distinguishability, noise, and device variability on these dissipation limits. Identifying these parameters is crucial to designing …


Cmos Compatible Memristor Networks For Brain-Inspired Computing, Can Li Nov 2018

Cmos Compatible Memristor Networks For Brain-Inspired Computing, Can Li

Doctoral Dissertations

In the past decades, the computing capability has shown an exponential growth trend, which is observed as Moore’s law. However, this growth speed is slowing down in recent years mostly because the down-scaled size of transistors is approaching their physical limit. On the other hand, recent advances in software, especially in big data analysis and artificial intelligence, call for a break-through in computing hardware. The memristor, or the resistive switching device, is believed to be a potential building block of the future generation of integrated circuits. The underlying mechanism of this device is different from that of complementary metal-oxide-semiconductor (CMOS) …


Leveraging Eye Structure And Motion To Build A Low-Power Wearable Gaze Tracking System, Addison Mayberry Oct 2018

Leveraging Eye Structure And Motion To Build A Low-Power Wearable Gaze Tracking System, Addison Mayberry

Doctoral Dissertations

Clinical studies have shown that features of a person's eyes can function as an effective proxy for cognitive state and neurological function. Technological advances in recent decades have allowed us to deepen this understanding and discover that the actions of the eyes are in fact very tightly coupled to the operation of the brain. Researchers have used camera-based eye monitoring technology to exploit this connection and analyze mental state across across many different metrics of interest. These range from simple things like attention and scene processing, to impairments such as a fatigue or substance use, and even significant mental disorders …


Integration Of Robotic Perception, Action, And Memory, Li Yang Ku Oct 2018

Integration Of Robotic Perception, Action, And Memory, Li Yang Ku

Doctoral Dissertations

In the book "On Intelligence", Hawkins states that intelligence should be measured by the capacity to memorize and predict patterns. I further suggest that the ability to predict action consequences based on perception and memory is essential for robots to demonstrate intelligent behaviors in unstructured environments. However, traditional approaches generally represent action and perception separately---as computer vision modules that recognize objects and as planners that execute actions based on labels and poses. I propose here a more integrated approach where action and perception are combined in a memory model, in which a sequence of actions can be planned based on …


Hybrid Black-Box Solar Analytics And Their Privacy Implications, Dong Chen Oct 2018

Hybrid Black-Box Solar Analytics And Their Privacy Implications, Dong Chen

Doctoral Dissertations

The aggregate solar capacity in the U.S. is rising rapidly due to continuing decreases in the cost of solar modules. For example, the installed cost per Watt (W) for residential photovoltaics (PVs) decreased by 6X from 2009 to 2018 (from $8/W to $1.2/W), resulting in the installed aggregate solar capacity increasing 128X from 2009 to 2018 (from 435 megawatts to 55.9 gigawatts). This increasing solar capacity is imposing operational challenges on utilities in balancing electricity's real-time supply and demand, as solar generation is more stochastic and less predictable than aggregate demand. To address this problem, both academia and utilities have …


Adaft: A Resource-Efficient Framework For Adaptive Fault-Tolerance In Cyber-Physical Systems, Ye Xu Nov 2017

Adaft: A Resource-Efficient Framework For Adaptive Fault-Tolerance In Cyber-Physical Systems, Ye Xu

Doctoral Dissertations

Cyber-physical systems frequently have to use massive redundancy to meet application requirements for high reliability. While such redundancy is required, it can be activated adaptively, based on the current state of the controlled plant. Most of the time the physical plant is in a state that allows for a lower level of fault-tolerance. Avoiding the continuous deployment of massive fault-tolerance will greatly reduce the workload of CPSs. In this dissertation, we demonstrate a software simulation framework (AdaFT) that can automatically generate the sub-spaces within which our adaptive fault-tolerance can be applied. We also show the theoretical benefits of AdaFT, and …


Belief-Space Planning For Resourceful Manipulation And Mobility, Dirk Ruiken Jul 2017

Belief-Space Planning For Resourceful Manipulation And Mobility, Dirk Ruiken

Doctoral Dissertations

Robots are increasingly expected to work in partially observable and unstructured environments. They need to select actions that exploit perceptual and motor resourcefulness to manage uncertainty based on the demands of the task and environment. The research in this dissertation makes two primary contributions. First, it develops a new concept in resourceful robot platforms called the UMass uBot and introduces the sixth and seventh in the uBot series. uBot-6 introduces multiple postural configurations that enable different modes of mobility and manipulation to meet the needs of a wide variety of tasks and environmental constraints. uBot-7 extends this with the use …


Intrinsic Functions For Securing Cmos Computation: Variability, Modeling And Noise Sensitivity, Xiaolin Xu Nov 2016

Intrinsic Functions For Securing Cmos Computation: Variability, Modeling And Noise Sensitivity, Xiaolin Xu

Doctoral Dissertations

A basic premise behind modern secure computation is the demand for lightweight cryptographic primitives, like identifier or key generator. From a circuit perspective, the development of cryptographic modules has also been driven by the aggressive scalability of complementary metal-oxide-semiconductor (CMOS) technology. While advancing into nano-meter regime, one significant characteristic of today's CMOS design is the random nature of process variability, which limits the nominal circuit design. With the continuous scaling of CMOS technology, instead of mitigating the physical variability, leveraging such properties becomes a promising way. One of the famous products adhering to this double-edged sword philosophy is the Physically …


Design And Implementation Of An Economy Plane For The Internet, Xinming Chen Nov 2015

Design And Implementation Of An Economy Plane For The Internet, Xinming Chen

Doctoral Dissertations

The Internet has been very successful in supporting many network applications. As the diversity of uses for the Internet has increased, many protocols and services have been developed by the industry and the research community. However, many of them failed to get deployed in the Internet. One challenge of deploying these novel ideas in operational network is that the network providers need to be involved in the process. Many novel network protocols and services, like multicast and end-to-end QoS, need the support from network providers. However, since network providers are typically driven by business reasons, if they can not get …


Energy-Efficient Content Delivery Networks, Vimal Mathew Nov 2015

Energy-Efficient Content Delivery Networks, Vimal Mathew

Doctoral Dissertations

Internet-scale distributed systems such as content delivery networks (CDNs) operate hundreds of thousands of servers deployed in thousands of data center locations around the globe. Since the energy costs of operating such a large IT infrastructure are a significant fraction of the total operating costs, we argue for redesigning them to incorporate energy optimization as a first-order principle. We focus on CDNs and demonstrate techniques to save energy while meeting client-perceived service level agreements (SLAs) and minimizing impact on hardware reliability. Servers deployed at individual data centers can be switched off at low load to save energy. We show that …


Threat Analysis, Countermeaures And Design Strategies For Secure Computation In Nanometer Cmos Regime, Raghavan Kumar Nov 2015

Threat Analysis, Countermeaures And Design Strategies For Secure Computation In Nanometer Cmos Regime, Raghavan Kumar

Doctoral Dissertations

Advancements in CMOS technologies have led to an era of Internet Of Things (IOT), where the devices have the ability to communicate with each other apart from their computational power. As more and more sensitive data is processed by embedded devices, the trend towards lightweight and efficient cryptographic primitives has gained significant momentum. Achieving a perfect security in silicon is extremely difficult, as the traditional cryptographic implementations are vulnerable to various active and passive attacks. There is also a threat in the form of "hardware Trojans" inserted into the supply chain by the untrusted third-party manufacturers for economic incentives. Apart …


Learning Parameterized Skills, Bruno Castro Da Silva Mar 2015

Learning Parameterized Skills, Bruno Castro Da Silva

Doctoral Dissertations

One of the defining characteristics of human intelligence is the ability to acquire and refine skills. Skills are behaviors for solving problems that an agent encounters often—sometimes in different contexts and situations—throughout its lifetime. Identifying important problems that recur and retaining their solutions as skills allows agents to more rapidly solve novel problems by adjusting and combining their existing skills. In this thesis we introduce a general framework for learning reusable parameterized skills. Reusable skills are parameterized procedures that—given a description of a problem to be solved—produce appropriate behaviors or policies. They can be sequentially and hierarchically combined with other …


Reliable And Efficient Multithreading, Tongping Liu Aug 2014

Reliable And Efficient Multithreading, Tongping Liu

Doctoral Dissertations

The advent of multicore architecture has increased the demand for multithreaded programs. It is notoriously far more challenging to write parallel programs correctly and efficiently than sequential ones because of the wide range of concurrency errors and performance problems. In this thesis, I developed a series of runtime systems and tools to combat concurrency errors and performance problems of multithreaded programs. The first system, Dthreads, automatically ensures determinism for unmodified C/C++ applications using the pthreads library without requiring programmer intervention and hardware support. Dthreads greatly simplifies the understanding and debugging of multithreaded programs. Dthreads often matches or even exceeds the …


Exploiting Energy Harvesting For Passive Embedded Computing Systems, Jeremy Joel Gummeson Apr 2014

Exploiting Energy Harvesting For Passive Embedded Computing Systems, Jeremy Joel Gummeson

Doctoral Dissertations

The key limitation in mobile computing systems is energy - without a stable power supply, these systems cannot process, store, or communicate data. This problem is of particular interest since the storage density of battery technologies do not follow scaling trends similar to Moore's law. This means that depending on application performance requirements and lifetime objectives, a battery may dominate the overall system weight and form factor; this could result in an overall size that is either inconvenient or unacceptable for a particular application. As device features have scaled down in size, entire embedded systems have been implemented on a …