Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 65

Full-Text Articles in Computer Engineering

Drone Detection Using Yolov5, Burchan Aydin, Subroto Singha Feb 2023

Drone Detection Using Yolov5, Burchan Aydin, Subroto Singha

Faculty Publications

The rapidly increasing number of drones in the national airspace, including those for recreational and commercial applications, has raised concerns regarding misuse. Autonomous drone detection systems offer a probable solution to overcoming the issue of potential drone misuse, such as drug smuggling, violating people’s privacy, etc. Detecting drones can be difficult, due to similar objects in the sky, such as airplanes and birds. In addition, automated drone detection systems need to be trained with ample amounts of data to provide high accuracy. Real-time detection is also necessary, but this requires highly configured devices such as a graphical processing unit (GPU). …


Quantifying Dds-Cerberus Network Control Overhead, Andrew T. Park, Nathaniel R. Peck, Richard Dill, Douglas D. Hodson, Michael R. Grimaila, Wayne C. Henry Sep 2022

Quantifying Dds-Cerberus Network Control Overhead, Andrew T. Park, Nathaniel R. Peck, Richard Dill, Douglas D. Hodson, Michael R. Grimaila, Wayne C. Henry

Faculty Publications

Securing distributed device communication is critical because the private industry and the military depend on these resources. One area that adversaries target is the middleware, which is the medium that connects different systems. This paper evaluates a novel security layer, DDS-Cerberus (DDS-C), that protects in-transit data and improves communication efficiency on data-first distribution systems. This research contributes a distributed robotics operating system testbed and designs a multifactorial performance-based experiment to evaluate DDS-C efficiency and security by assessing total packet traffic generated in a robotics network. The performance experiment follows a 2:1 publisher to subscriber node ratio, varying the number of …


A Monte Carlo Framework For Incremental Improvement Of Simulation Fidelity, Damian Lyons, James Finocchiaro, Misha Novitsky, Chris Korpela Jul 2022

A Monte Carlo Framework For Incremental Improvement Of Simulation Fidelity, Damian Lyons, James Finocchiaro, Misha Novitsky, Chris Korpela

Faculty Publications

Robot software developed in simulation often does not be- have as expected when deployed because the simulation does not sufficiently represent reality - this is sometimes called the `reality gap' problem. We propose a novel algorithm to address the reality gap by injecting real-world experience into the simulation. It is assumed that the robot program (control policy) is developed using simulation, but subsequently deployed on a real system, and that the program includes a performance objective monitor procedure with scalar output. The proposed approach collects simulation and real world observations and builds conditional probability functions. These are used to generate …


Visual Homing For Robot Teams: Do You See What I See?, Damian Lyons, Noah Petzinger Apr 2022

Visual Homing For Robot Teams: Do You See What I See?, Damian Lyons, Noah Petzinger

Faculty Publications

Visual homing is a lightweight approach to visual navigation which does not require GPS. It is very attractive for robot platforms with a low computational capacity. However, a limitation is that the stored home location must be initially within the field of view of the robot. Motivated by the increasing ubiquity of camera information we propose to address this line-of-sight limitation by leveraging camera information from other robots and fixed cameras. To home to a location that is not initially within view, a robot must be able to identify a common visual landmark with another robot that can be used …


Effect Of Connection State & Transport/Application Protocol On The Machine Learning Outlier Detection Of Network Intrusions, George Yuchi [*], Torrey J. Wagner, Paul Auclair, Brent T. Langhals Jan 2022

Effect Of Connection State & Transport/Application Protocol On The Machine Learning Outlier Detection Of Network Intrusions, George Yuchi [*], Torrey J. Wagner, Paul Auclair, Brent T. Langhals

Faculty Publications

The majority of cyber infiltration & exfiltration intrusions leave a network footprint, and due to the multi-faceted nature of detecting network intrusions, it is often difficult to detect. In this work a Zeek-processed PCAP dataset containing the metadata of 36,667 network packets was modeled with several machine learning algorithms to classify normal vs. anomalous network activity. Principal component analysis with a 10% contamination factor was used to identify anomalous behavior. Models were created using recursive feature elimination on logistic regression and XGBClassifier algorithms, and also using Bayesian and bandit optimization of neural network hyperparameters. These models were trained on a …


Traffic Collision Avoidance System: False Injection Viability, John Hannah, Robert F. Mills, Richard A. Dill, Douglas D. Hodson Nov 2021

Traffic Collision Avoidance System: False Injection Viability, John Hannah, Robert F. Mills, Richard A. Dill, Douglas D. Hodson

Faculty Publications

Safety is a simple concept but an abstract task, specifically with aircraft. One critical safety system, the Traffic Collision Avoidance System II (TCAS), protects against mid-air collisions by predicting the course of other aircraft, determining the possibility of collision, and issuing a resolution advisory for avoidance. Previous research to identify vulnerabilities associated with TCAS’s communication processes discovered that a false injection attack presents the most comprehensive risk to veritable trust in TCAS, allowing for a mid-air collision. This research explores the viability of successfully executing a false injection attack against a target aircraft, triggering a resolution advisory. Monetary constraints precluded …


A Statistical Impulse Response Model Based On Empirical Characterization Of Wireless Underground Channel, Abdul Salam, Mehmet C. Vuran, Suat Irmak Sep 2020

A Statistical Impulse Response Model Based On Empirical Characterization Of Wireless Underground Channel, Abdul Salam, Mehmet C. Vuran, Suat Irmak

Faculty Publications

Wireless underground sensor networks (WUSNs) are becoming ubiquitous in many areas. The design of robust systems requires extensive understanding of the underground (UG) channel characteristics. In this paper, an UG channel impulse response is modeled and validated via extensive experiments in indoor and field testbed settings. The three distinct types of soils are selected with sand and clay contents ranging from $13\%$ to $86\%$ and $3\%$ to $32\%$, respectively. The impacts of changes in soil texture and soil moisture are investigated with more than $1,200$ measurements in a novel UG testbed that allows flexibility in soil moisture control. Moreover, the …


Using Taint Analysis And Reinforcement Learning (Tarl) To Repair Autonomous Robot Software, Damian Lyons, Saba Zahra May 2020

Using Taint Analysis And Reinforcement Learning (Tarl) To Repair Autonomous Robot Software, Damian Lyons, Saba Zahra

Faculty Publications

It is important to be able to establish formal performance bounds for autonomous systems. However, formal verification techniques require a model of the environment in which the system operates; a challenge for autonomous systems, especially those expected to operate over longer timescales. This paper describes work in progress to automate the monitor and repair of ROS-based autonomous robot software written for an a-priori partially known and possibly incorrect environment model. A taint analysis method is used to automatically extract the data-flow sequence from input topic to publish topic, and instrument that code. A unique reinforcement learning approximation of MDP utility …


A New Ectotherm 3d Tracking And Behavior Analytics System Using A Depth-Based Approach With Color Validation, With Preliminary Data On Kihansi Spray Toad (Nectophrynoides Asperginis) Activity, Philip Bal, Damian Lyons, Avishai Shuter Mar 2020

A New Ectotherm 3d Tracking And Behavior Analytics System Using A Depth-Based Approach With Color Validation, With Preliminary Data On Kihansi Spray Toad (Nectophrynoides Asperginis) Activity, Philip Bal, Damian Lyons, Avishai Shuter

Faculty Publications

The Kihansi spray toad (Nectophrynoides asperginis), classified as Extinct in the Wild by the IUCN, is being bred at the Wildlife Conservation Society’s (WCS) Bronx Zoo as part of an effort to successfully reintroduce the species into the wild. Thousands of toads live at the Bronx Zoo presenting an opportunity to learn more about their behaviors for the first time, at scale. It is impractical to perform manual observations for long periods of time. This paper reports on the development of a RGB-D tracking and analytics approach that allows researchers to accurately and efficiently gather information about the toads’ behavior. …


Wireless Underground Communications In Sewer And Stormwater Overflow Monitoring: Radio Waves Through Soil And Asphalt Medium, Usman Raza, Abdul Salam Feb 2020

Wireless Underground Communications In Sewer And Stormwater Overflow Monitoring: Radio Waves Through Soil And Asphalt Medium, Usman Raza, Abdul Salam

Faculty Publications

Storm drains and sanitary sewers are prone to backups and overflows due to extra amount wastewater entering the pipes. To prevent that, it is imperative to efficiently monitor the urban underground infrastructure. The combination of sensors system and wireless underground communication system can be used to realize urban underground IoT applications, e.g., storm water and wastewater overflow monitoring systems. The aim of this article is to establish a feasibility of the use of wireless underground communications techniques, and wave propagation through the subsurface soil and asphalt layers, in an underground pavement system for storm water and sewer overflow monitoring application. …


A Monte Carlo Approach To Closing The Reality Gap, Damian Lyons, James Finocchiaro, Michael Novitzky, Christopher Korpela Feb 2020

A Monte Carlo Approach To Closing The Reality Gap, Damian Lyons, James Finocchiaro, Michael Novitzky, Christopher Korpela

Faculty Publications

We propose a novel approach to the ’reality gap’ problem, i.e., modifying a robot simulation so that its performance becomes more similar to observed real world phenomena. This problem arises whether the simulation is being used by human designers or in an automated policy development mechanism. We expect that the program/policy is developed using simulation, and subsequently deployed on a real system. We further assume that the program includes a monitor procedure with scalar output to determine when it is achieving its performance objectives. The proposed approach collects simulation and real world observations and builds conditional probability functions. These are …


Fkrr-Mvsf: A Fuzzy Kernel Ridge Regression Model For Identifying Dna-Binding Proteins By Multi-View Sequence Features Via Chou's Five-Step Rule, Yi Zou, Yijie Ding, Jijun Tang, Fei Guo, Li Peng Sep 2019

Fkrr-Mvsf: A Fuzzy Kernel Ridge Regression Model For Identifying Dna-Binding Proteins By Multi-View Sequence Features Via Chou's Five-Step Rule, Yi Zou, Yijie Ding, Jijun Tang, Fei Guo, Li Peng

Faculty Publications

DNA-binding proteins play an important role in cell metabolism. In biological laboratories, the detection methods of DNA-binding proteins includes yeast one-hybrid methods, bacterial singles and X-ray crystallography methods and others, but these methods involve a lot of labor, material and time. In recent years, many computation-based approachs have been proposed to detect DNA-binding proteins. In this paper, a machine learning-based method, which is called the Fuzzy Kernel Ridge Regression model based on Multi-View Sequence Features (FKRR-MVSF), is proposed to identifying DNA-binding proteins. First of all, multi-view sequence features are extracted from protein sequences. Next, a Multiple Kernel Learning (MKL) algorithm …


Fkrr-Mvsf: A Fuzzy Kernel Ridge Regression Model For Identifying Dna-Binding Proteins By Multi-View Sequence Features Via Chou's Five-Step Rule, Yi Zou, Yije Ding, Jijun Tang, Fei Guo, Li Peng Sep 2019

Fkrr-Mvsf: A Fuzzy Kernel Ridge Regression Model For Identifying Dna-Binding Proteins By Multi-View Sequence Features Via Chou's Five-Step Rule, Yi Zou, Yije Ding, Jijun Tang, Fei Guo, Li Peng

Faculty Publications

DNA-binding proteins play an important role in cell metabolism. In biological laboratories, the detection methods of DNA-binding proteins includes yeast one-hybrid methods, bacterial singles and X-ray crystallography methods and others, but these methods involve a lot of labor, material and time. In recent years, many computation-based approachs have been proposed to detect DNA-binding proteins. In this paper, a machine learning-based method, which is called the Fuzzy Kernel Ridge Regression model based on Multi-View Sequence Features (FKRR-MVSF), is proposed to identifying DNA-binding proteins. First of all, multi-view sequence features are extracted from protein sequences. Next, a Multiple Kernel Learning (MKL) algorithm …


A Review Of Text Corpus-Based Tourism Big Data Mining, Qin Li, Shaobo Li, Sen Zhang, Jie Hu, Jianhun Hu Aug 2019

A Review Of Text Corpus-Based Tourism Big Data Mining, Qin Li, Shaobo Li, Sen Zhang, Jie Hu, Jianhun Hu

Faculty Publications

With the massive growth of the Internet, text data has become one of the main formats of tourism big data. As an effective expression means of tourists’ opinions, text mining of such data has big potential to inspire innovations for tourism practitioners. In the past decade, a variety of text mining techniques have been proposed and applied to tourism analysis to develop tourism value analysis models, build tourism recommendation systems, create tourist profiles, and make policies for supervising tourism markets. The successes of these techniques have been further boosted by the progress of natural language processing (NLP), machine learning, and …


Personalized Product Evaluation Based On Gra-Topsis And Kansei Engineering, Huafeng Quan, Shaobo Li, Hongjing Wei, Jianjun Hu Jul 2019

Personalized Product Evaluation Based On Gra-Topsis And Kansei Engineering, Huafeng Quan, Shaobo Li, Hongjing Wei, Jianjun Hu

Faculty Publications

With the improvement of human living standards, users’ requirements have changed from function to emotion. Helping users pick out the most suitable product based on their subjective requirements is of great importance for enterprises. This paper proposes a Kansei engineering-based grey relational analysis and techniques for order preference by similarity to ideal solution (KE-GAR-TOPSIS) method to make a subjective user personalized ranking of alternative products. The KE-GRA-TOPSIS method integrates five methods, including Kansei Engineering (KE), analytic hierarchy process (AHP), entropy, game theory, and grey relational analysis-TOPSIS (GRA-TOPSIS). First, an evaluation system is established by KE and AHP. Second, we define …


Towards Lakosian Multilingual Software Design Principles, Damian Lyons, Saba Zahra, Thomas Marshall Jul 2019

Towards Lakosian Multilingual Software Design Principles, Damian Lyons, Saba Zahra, Thomas Marshall

Faculty Publications

Large software systems often comprise programs written in different programming languages. In the case when cross-language interoperability is accomplished with a Foreign Function Interface (FFI), for example pybind11, Boost.Python, Emscripten, PyV8, or JNI, among many others, common software engineering tools, such as call-graph analysis, are obstructed by the opacity of the FFI. This complicates debugging and fosters potential inefficiency and security problems. One contributing issue is that there is little rigorous software design advice for multilingual software. In this paper, we present our progress towards a more rigorous design approach to multilingual software. The approach is based on the existing …


Using Big Data Analytics To Improve Hiv Medical Care Utilisation In South Carolina: A Study Protocol, Bankole Olatosi, Jiajia Zhang, Sharon Weissman, Jianjun Hu, Mohammad Rifat Haider, Xiaoming Li Jun 2019

Using Big Data Analytics To Improve Hiv Medical Care Utilisation In South Carolina: A Study Protocol, Bankole Olatosi, Jiajia Zhang, Sharon Weissman, Jianjun Hu, Mohammad Rifat Haider, Xiaoming Li

Faculty Publications

Introduction Linkage and retention in HIV medical care remains problematic in the USA. Extensive health utilisation data collection through electronic health records (EHR) and claims data represent new opportunities for scientific discovery. Big data science (BDS) is a powerful tool for investigating HIV care utilisation patterns. The South Carolina (SC) office of Revenue and Fiscal Affairs (RFA) data warehouse captures individual-level longitudinal health utilisation data for persons living with HIV (PLWH). The data warehouse includes EHR, claims and data from private institutions, housing, prisons, mental health, Medicare, Medicaid, State Health Plan and the department of health and human services. The …


Deep Autoencoder Neural Networks For Short-Term Traffic Congestion Prediction Of Transportation Networks, Sen Zhang, Yong Yao, Jie Hu, Yong Zhao, Shaobo Li, Jianjun Hu May 2019

Deep Autoencoder Neural Networks For Short-Term Traffic Congestion Prediction Of Transportation Networks, Sen Zhang, Yong Yao, Jie Hu, Yong Zhao, Shaobo Li, Jianjun Hu

Faculty Publications

Traffic congestion prediction is critical for implementing intelligent transportation systems for improving the efficiency and capacity of transportation networks. However, despite its importance, traffic congestion prediction is severely less investigated compared to traffic flow prediction, which is partially due to the severe lack of large-scale high-quality traffic congestion data and advanced algorithms. This paper proposes an accessible and general workflow to acquire large-scale traffic congestion data and to create traffic congestion datasets based on image analysis. With this workflow we create a dataset named Seattle Area Traffic Congestion Status (SATCS) based on traffic congestion map snapshots from a publicly available …


Urban Underground Infrastructure Monitoring Iot: The Path Loss Analysis, Abdul Salam, Syed Shah Apr 2019

Urban Underground Infrastructure Monitoring Iot: The Path Loss Analysis, Abdul Salam, Syed Shah

Faculty Publications

The extra quantities of wastewater entering the pipes can cause backups that result in sanitary sewer overflows. Urban underground infrastructure monitoring is important for controlling the flow of extraneous water into the pipelines. By combining the wireless underground communications and sensor solutions, the urban underground IoT applications such as real time wastewater and storm water overflow monitoring can be developed. In this paper, the path loss analysis of wireless underground communications in urban underground IoT for wastewater monitoring has been presented. It has been shown that the communication range of up to 4 kilometers can be achieved from an underground …


An Underground Radio Wave Propagation Prediction Model For Digital Agriculture, Abdul Salam Apr 2019

An Underground Radio Wave Propagation Prediction Model For Digital Agriculture, Abdul Salam

Faculty Publications

Underground sensing and propagation of Signals in the Soil (SitS) medium is an electromagnetic issue. The path loss prediction with higher accuracy is an open research subject in digital agriculture monitoring applications for sensing and communications. The statistical data are predominantly derived from site-specific empirical measurements, which is considered an impediment to universal application. Nevertheless, in the existing literature, statistical approaches have been applied to the SitS channel modeling, where impulse response analysis and the Friis open space transmission formula are employed as the channel modeling tool in different soil types under varying soil moisture conditions at diverse communication distances …


Convolutional Neural Networks For Crystal Material Property Prediction Using Hybrid Orbital-Field Matrix And Magpie Descriptors, Zhuo Cao, Yabo Dan, Zheng Xiong, Chengcheng Niu, Xiang Li, Songrong Qian, Jianjun Hu Apr 2019

Convolutional Neural Networks For Crystal Material Property Prediction Using Hybrid Orbital-Field Matrix And Magpie Descriptors, Zhuo Cao, Yabo Dan, Zheng Xiong, Chengcheng Niu, Xiang Li, Songrong Qian, Jianjun Hu

Faculty Publications

Computational prediction of crystal materials properties can help to do large-scale in-silicon screening. Recent studies of material informatics have focused on expert design of multi-dimensional interpretable material descriptors/features. However, successes of deep learning such as Convolutional Neural Networks (CNN) in image recognition and speech recognition have demonstrated their automated feature extraction capability to effectively capture the characteristics of the data and achieve superior prediction performance. Here, we propose CNN-OFM-Magpie, a CNN model with OFM (Orbital-field Matrix) and Magpie descriptors to predict the formation energy of 4030 crystal material by exploiting the complementarity of two-dimensional OFM features and Magpie features. Experiments …


Underground Environment Aware Mimo Design Using Transmit And Receive Beamforming In Internet Of Underground Things, Abdul Salam Apr 2019

Underground Environment Aware Mimo Design Using Transmit And Receive Beamforming In Internet Of Underground Things, Abdul Salam

Faculty Publications

In underground (UG) multiple-input and multiple-output (MIMO), the transmit beamforming is used to focus energy in the desired direction. There are three different paths in the underground soil medium through which the waves propagates to reach at the receiver. When the UG receiver receives a desired data stream only from the desired path, then the UG MIMO channel becomes three path (lateral, direct, and reflected) interference channel. Accordingly, the capacity region of the UG MIMO three path interference channel and degrees of freedom (multiplexing gain of this MIMO channel requires careful modeling). Therefore, expressions are required derived the degrees of …


Tourism Review Sentiment Classification Using A Bidirectional Recurrent Neural Network With An Attention Mechanism And Topic-Enriched Word Vectors, Qin Li, Shaobo Li, Jie Hu, Sen Zhang, Jianjun Hu Sep 2018

Tourism Review Sentiment Classification Using A Bidirectional Recurrent Neural Network With An Attention Mechanism And Topic-Enriched Word Vectors, Qin Li, Shaobo Li, Jie Hu, Sen Zhang, Jianjun Hu

Faculty Publications

Sentiment analysis of online tourist reviews is playing an increasingly important role in tourism. Accurately capturing the attitudes of tourists regarding different aspects of the scenic sites or the overall polarity of their online reviews is key to tourism analysis and application. However, the performances of current document sentiment analysis methods are not satisfactory as they either neglect the topics of the document or do not consider that not all words contribute equally to the meaning of the text. In this work, we propose a bidirectional gated recurrent unit neural network model (BiGRULA) for sentiment analysis by combining a topic …


End-To-End Convolutional Neural Network Model For Gear Fault Diagnosis Based On Sound Signals, Yong Yao, Honglei Wang, Shaobo Li, Zhongnhao Liu, Gui Gui, Yabo Dan, Jianjun Hu Sep 2018

End-To-End Convolutional Neural Network Model For Gear Fault Diagnosis Based On Sound Signals, Yong Yao, Honglei Wang, Shaobo Li, Zhongnhao Liu, Gui Gui, Yabo Dan, Jianjun Hu

Faculty Publications

Currently gear fault diagnosis is mainly based on vibration signals with a few studies on acoustic signal analysis. However, vibration signal acquisition is limited by its contact measuring while traditional acoustic-based gear fault diagnosis relies heavily on prior knowledge of signal processing techniques and diagnostic expertise. In this paper, a novel deep learning-based gear fault diagnosis method is proposed based on sound signal analysis. By establishing an end-to-end convolutional neural network (CNN), the time and frequency domain signals can be fed into the model as raw signals without feature engineering. Moreover, multi-channel information from different microphones can also be fused …


An Ensemble Stacked Convolutional Neural Network Model For Environmental Event Sound Recognition, Shaobo Li, Yong Yao, Jie Hu, Guokai Liu, Xuemei Yao, Jianjun Hu Jul 2018

An Ensemble Stacked Convolutional Neural Network Model For Environmental Event Sound Recognition, Shaobo Li, Yong Yao, Jie Hu, Guokai Liu, Xuemei Yao, Jianjun Hu

Faculty Publications

Convolutional neural networks (CNNs) with log-mel audio representation and CNN-based end-to-end learning have both been used for environmental event sound recognition (ESC). However, log-mel features can be complemented by features learned from the raw audio waveform with an effective fusion method. In this paper, we first propose a novel stacked CNN model with multiple convolutional layers of decreasing filter sizes to improve the performance of CNN models with either log-mel feature input or raw waveform input. These two models are then combined using the Dempster–Shafer (DS) evidence theory to build the ensemble DS-CNN model for ESC. Our experiments over three …


A Building Permit System For Smart Cities: A Cloud-Based Framework, Magdalini Eirinaki, Subhankar Dhar, Shishir Mathur, Adwait Kaley, Arpit Patel, Akshar Joshi, Dhvani Shah Jul 2018

A Building Permit System For Smart Cities: A Cloud-Based Framework, Magdalini Eirinaki, Subhankar Dhar, Shishir Mathur, Adwait Kaley, Arpit Patel, Akshar Joshi, Dhvani Shah

Faculty Publications

In this paper we propose a novel, cloud-based framework to support citizens and city officials in the building permit process. The proposed framework is efficient, user-friendly, and transparent with a quick turn-around time for homeowners. Compared to existing permit systems, the proposed smart city permit framework provides a pre-permitting decision workflow, and incorporates a data analytics and mining module that enables the continuous improvement of both the end user experience and the permitting and urban planning processes. This is enabled through a data mining-powered permit recommendation engine as well as a data analytics process that allow a gleaning of key …


Social Recommendations For Personalized Fitness Assistance, Saumil Dharia, Magdalini Eirinaki, Vijesh Jain, Jvalant Patel, Iraklis Varlamis, Jainikkumar Vora, Rizen Yamauchi Apr 2018

Social Recommendations For Personalized Fitness Assistance, Saumil Dharia, Magdalini Eirinaki, Vijesh Jain, Jvalant Patel, Iraklis Varlamis, Jainikkumar Vora, Rizen Yamauchi

Faculty Publications

Wearable technology allows users to monitor their activity and pursue a healthy lifestyle through the use of embedded sensors. Such wearables usually connect to a mobile application that allows them to set their profile and keep track of their goals. However, due to the relatively “high maintenance” of such applications, where a significant amount of user feedback is expected, users who are very busy, or not as self-motivated, stop using them after a while. It has been shown that accountability improves commitment to an exercise routine. In this work, we present the PRO-Fit framework, a personalized fitness assistant aiming at …


A Bayesian Network Based Adaptability Design Of Product Structures For Function Evolution, Shaobo Li, Yongming Wu, Yan-Xia Xu, Jie Hu, Jianjun Hu Mar 2018

A Bayesian Network Based Adaptability Design Of Product Structures For Function Evolution, Shaobo Li, Yongming Wu, Yan-Xia Xu, Jie Hu, Jianjun Hu

Faculty Publications

Structure adaptability design is critical for function evolution in product families, in which many structural and functional design factors are intertwined together with manufacturing cost, customer satisfaction, and final market sales. How to achieve a delicate balance among all of these factors to maximize the market performance of the product is too complicated to address based on traditional domain experts’ knowledge or some ad hoc heuristics. Here, we propose a quantitative product evolution design model that is based on Bayesian networks to model the dynamic relationship between customer needs and product structure design. In our model, all of the structural …


Aspie: A Framework For Active Sensing And Processing Of Complex Events In The Internet Of Manufacturing Things, Shaobo Li, Weixing Chen, Jie Hu, Jianjun Hu Mar 2018

Aspie: A Framework For Active Sensing And Processing Of Complex Events In The Internet Of Manufacturing Things, Shaobo Li, Weixing Chen, Jie Hu, Jianjun Hu

Faculty Publications

Rapid perception and processing of critical monitoring events are essential to ensure healthy operation of Internet of Manufacturing Things (IoMT)-based manufacturing processes. In this paper, we proposed a framework (active sensing and processing architecture (ASPIE)) for active sensing and processing of critical events in IoMT-based manufacturing based on the characteristics of IoMT architecture as well as its perception model. A relation model of complex events in manufacturing processes, together with related operators and unified XML-based semantic definitions, are developed to effectively process the complex event big data. A template based processing method for complex events is further introduced to conduct …


A Novel Evolutionary Algorithm For Designing Robust Analog Filters, Shaobo Li, Wang Zou, Jianjun Hu Mar 2018

A Novel Evolutionary Algorithm For Designing Robust Analog Filters, Shaobo Li, Wang Zou, Jianjun Hu

Faculty Publications

Designing robust circuits that withstand environmental perturbation and device degradation is critical for many applications. Traditional robust circuit design is mainly done by tuning parameters to improve system robustness. However, the topological structure of a system may set a limit on the robustness achievable through parameter tuning. This paper proposes a new evolutionary algorithm for robust design that exploits the open-ended topological search capability of genetic programming (GP) coupled with bond graph modeling. We applied our GP-based robust design (GPRD) algorithm to evolve robust lowpass and highpass analog filters. Compared with a traditional robust design approach based on a state-of-the-art …