Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

PDF

Technological University Dublin

Deep Belief Networks

Articles 1 - 2 of 2

Full-Text Articles in Computer Engineering

Investigating The Impact Of Unsupervised Feature-Extraction From Multi-Wavelength Image Data For Photometric Classification Of Stars, Galaxies And Qsos, Annika Lindh Dec 2016

Investigating The Impact Of Unsupervised Feature-Extraction From Multi-Wavelength Image Data For Photometric Classification Of Stars, Galaxies And Qsos, Annika Lindh

Conference papers

Accurate classification of astronomical objects currently relies on spectroscopic data. Acquiring this data is time-consuming and expensive compared to photometric data. Hence, improving the accuracy of photometric classification could lead to far better coverage and faster classification pipelines. This paper investigates the benefit of using unsupervised feature-extraction from multi-wavelength image data for photometric classification of stars, galaxies and QSOs. An unsupervised Deep Belief Network is used, giving the model a higher level of interpretability thanks to its generative nature and layer-wise training. A Random Forest classifier is used to measure the contribution of the novel features compared to a set …


Investigating The Impact Of Unsupervised Feature-Extraction From Multi-Wavelength Image Data For Photometric Classification Of Stars, Galaxies And Qsos, Annika Lindh Sep 2016

Investigating The Impact Of Unsupervised Feature-Extraction From Multi-Wavelength Image Data For Photometric Classification Of Stars, Galaxies And Qsos, Annika Lindh

Dissertations

This thesis reviews the current state of photometric classification in Astronomy and identifies two main gaps: a dependence on handcrafted rules, and a lack of interpretability in the more successful classifiers. To address this, Deep Learning and Computer Vision were used to create a more interpretable model, using unsupervised training to reduce human bias.

The main contribution is the investigation into the impact of using unsupervised feature-extraction from multi-wavelength image data for the classification task. The feature-extraction is achieved by implementing an unsupervised Deep Belief Network to extract lower-dimensionality features from the multi-wavelength image data captured by the Sloan Digital …