Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Computer Engineering

Extracting Dnn Architectures Via Runtime Profiling On Mobile Gpus, Dong Hyub Kim Mar 2024

Extracting Dnn Architectures Via Runtime Profiling On Mobile Gpus, Dong Hyub Kim

Masters Theses

Due to significant investment, research, and development efforts over the past decade, deep neural networks (DNNs) have achieved notable advancements in classification and regression domains. As a result, DNNs are considered valuable intellectual property for artificial intelligence providers. Prior work has demonstrated highly effective model extraction attacks which steal a DNN, dismantling the provider’s business model and paving the way for unethical or malicious activities, such as misuse of personal data, safety risks in critical systems, or spreading misinformation. This thesis explores the feasibility of model extraction attacks on mobile devices using aggregated runtime profiles as a side-channel to leak …


Implementation Of Adas And Autonomy On Unlv Campus, Zillur Rahman Dec 2023

Implementation Of Adas And Autonomy On Unlv Campus, Zillur Rahman

UNLV Theses, Dissertations, Professional Papers, and Capstones

The integration of Advanced Driving Assistance Systems (ADAS) and autonomous driving functionalities into contemporary vehicles has notably surged, driven by the remarkable progress in artificial intelligence (AI). These AI systems, capable of learning from real-world data, now exhibit the capability to perceive their surroundings via a suite of sensors, create optimal routes from source to destination, and execute vehicle control akin to a human driver.

Within the context of this thesis, we undertake a comprehensive exploration of three distinct yet interrelated ADAS and Autonomy projects. Our central objective is the implementation of autonomous driving(AD) technology at UNLV campus, culminating in …


Generalizable Deep-Learning-Based Wireless Indoor Localization, Ali Owfi Aug 2023

Generalizable Deep-Learning-Based Wireless Indoor Localization, Ali Owfi

All Theses

The growing interest in indoor localization has been driven by its wide range of applications in areas such as smart homes, industrial automation, and healthcare. With the increasing reliance on wireless devices for location-based services, accurate estimation of device positions within indoor environments has become crucial. Deep learning approaches have shown promise in leveraging wireless parameters like Channel State Information (CSI) and Received Signal Strength Indicator (RSSI) to achieve precise localization. However, despite their success in achieving high accuracy, these deep learning models suffer from limited generalizability, making them unsuitable for deployment in new or dynamic environments without retraining. To …


Applied Deep Learning: Case Studies In Computer Vision And Natural Language Processing, Md Reshad Ul Hoque Aug 2022

Applied Deep Learning: Case Studies In Computer Vision And Natural Language Processing, Md Reshad Ul Hoque

Electrical & Computer Engineering Theses & Dissertations

Deep learning has proved to be successful for many computer vision and natural language processing applications. In this dissertation, three studies have been conducted to show the efficacy of deep learning models for computer vision and natural language processing. In the first study, an efficient deep learning model was proposed for seagrass scar detection in multispectral images which produced robust, accurate scars mappings. In the second study, an arithmetic deep learning model was developed to fuse multi-spectral images collected at different times with different resolutions to generate high-resolution images for downstream tasks including change detection, object detection, and land cover …


Deep Learning For Load Forecasting With Smart Meter Data: Online And Federated Learning, Mohammad Navid Fekri Apr 2022

Deep Learning For Load Forecasting With Smart Meter Data: Online And Federated Learning, Mohammad Navid Fekri

Electronic Thesis and Dissertation Repository

Electricity load forecasting has been attracting increasing attention because of its importance for energy management, infrastructure planning, and budgeting. In recent years, the proliferation of smart meters has created new opportunities for forecasting on the building and even individual household levels. Machine learning (ML) has achieved great successes in this domain; however, conventional ML techniques require data transfer to a centralized location for model training, therefore, increasing network traffic and exposing data to privacy and security risks. Also, traditional approaches employ offline learning, which means that they are only trained once and miss out on the possibility to learn from …


Evaluation Of Robust Deep Learning Pipelines Targeting Low Swap Edge Deployment, David Carter Cornett Dec 2021

Evaluation Of Robust Deep Learning Pipelines Targeting Low Swap Edge Deployment, David Carter Cornett

Masters Theses

The deep learning technique of convolutional neural networks (CNNs) has greatly advanced the state-of-the-art for computer vision tasks such as image classification and object detection. These solutions rely on large systems leveraging wattage-hungry GPUs to provide the computational power to achieve such performance. However, the size, weight and power (SWaP) requirements of these conventional GPU-based deep learning systems are not suitable when a solution requires deployment to so called "Edge" environments such as autonomous vehicles, unmanned aerial vehicles (UAVs) and smart security cameras.

The objective of this work is to benchmark FPGA-based alternatives to conventional GPU systems that have the …


Forecasting Pedestrian Trajectory Using Deep Learning, Arsal Syed Aug 2021

Forecasting Pedestrian Trajectory Using Deep Learning, Arsal Syed

UNLV Theses, Dissertations, Professional Papers, and Capstones

In this dissertation we develop different methods for forecasting pedestrian trajectories. Complete understanding of pedestrian motion is essential for autonomous agents and social robots to make realistic and safe decisions. Current trajectory prediction methods rely on incorporating historic motion, scene features and social interaction to model pedestrian behaviors. Our focus is to accurately understand scene semantics to better forecast trajectories. In order to do so, we leverage semantic segmentation to encode static scene features such as walkable paths, entry/exits, static obstacles etc. We further evaluate the effectiveness of using semantic maps on different datasets and compare its performance with already …


Signal Processing And Data Analysis For Real-Time Intermodal Freight Classification Through A Multimodal Sensor System., Enrique J. Sanchez Headley Jul 2021

Signal Processing And Data Analysis For Real-Time Intermodal Freight Classification Through A Multimodal Sensor System., Enrique J. Sanchez Headley

Graduate Theses and Dissertations

Identifying freight patterns in transit is a common need among commercial and municipal entities. For example, the allocation of resources among Departments of Transportation is often predicated on an understanding of freight patterns along major highways. There exist multiple sensor systems to detect and count vehicles at areas of interest. Many of these sensors are limited in their ability to detect more specific features of vehicles in traffic or are unable to perform well in adverse weather conditions. Despite this limitation, to date there is little comparative analysis among Laser Imaging and Detection and Ranging (LIDAR) sensors for freight detection …


Convolutional Neural Networks For Deflate Data Encoding Classification Of High Entropy File Fragments, Nehal Ameen May 2021

Convolutional Neural Networks For Deflate Data Encoding Classification Of High Entropy File Fragments, Nehal Ameen

University of New Orleans Theses and Dissertations

Data reconstruction is significantly improved in terms of speed and accuracy by reliable data encoding fragment classification. To date, work on this problem has been successful with file structures of low entropy that contain sparse data, such as large tables or logs. Classifying compressed, encrypted, and random data that exhibit high entropy is an inherently difficult problem that requires more advanced classification approaches. We explore the ability of convolutional neural networks and word embeddings to classify deflate data encoding of high entropy file fragments after establishing ground truth using controlled datasets. Our model is designed to either successfully classify file …


Edge-Cloud Iot Data Analytics: Intelligence At The Edge With Deep Learning, Ananda Mohon M. Ghosh May 2020

Edge-Cloud Iot Data Analytics: Intelligence At The Edge With Deep Learning, Ananda Mohon M. Ghosh

Electronic Thesis and Dissertation Repository

Rapid growth in numbers of connected devices, including sensors, mobile, wearable, and other Internet of Things (IoT) devices, is creating an explosion of data that are moving across the network. To carry out machine learning (ML), IoT data are typically transferred to the cloud or another centralized system for storage and processing; however, this causes latencies and increases network traffic. Edge computing has the potential to remedy those issues by moving computation closer to the network edge and data sources. On the other hand, edge computing is limited in terms of computational power and thus is not well suited for …


Dedicated Hardware For Machine/Deep Learning: Domain Specific Architectures, Angel Izael Solis Jan 2019

Dedicated Hardware For Machine/Deep Learning: Domain Specific Architectures, Angel Izael Solis

Open Access Theses & Dissertations

Artificial intelligence has come a very long way from being a mere spectacle on the silver screen in the 1920s [Hml18]. As artificial intelligence continues to evolve, and we begin to develop more sophisticated Artificial Neural Networks, the need for specialized and more efficient machines (less computational strain while maintaining the same performance results) becomes increasingly evident. Though these “new” techniques, such as Multilayer Perceptron’s, Convolutional Neural Networks and Recurrent Neural Networks, may seem as if they are on the cutting edge of technology, many of these ideas are over 60 years old! However, many of these earlier models, at …


Emotion Forecasting In Dyadic Conversation : Characterizing And Predicting Future Emotion With Audio-Visual Information Using Deep Learning, Sadat Shahriar Jan 2019

Emotion Forecasting In Dyadic Conversation : Characterizing And Predicting Future Emotion With Audio-Visual Information Using Deep Learning, Sadat Shahriar

Legacy Theses & Dissertations (2009 - 2024)

Emotion forecasting is the task of predicting the future emotion of a speaker, i.e., the emotion label of the future speaking turn–based on the speaker’s past and current audio-visual cues. Emotion forecasting systems require new problem formulations that differ from traditional emotion recognition systems. In this thesis, we first explore two types of forecasting windows(i.e., analysis windows for which the speaker’s emotion is being forecasted): utterance forecasting and time forecasting. Utterance forecasting is based on speaking turns and forecasts what the speaker’s emotion will be after one, two, or three speaking turns. Time forecasting forecasts what the speaker’s emotion will …


Explorations Into Machine Learning Techniques For Precipitation Nowcasting, Aditya Nagarajan Mar 2017

Explorations Into Machine Learning Techniques For Precipitation Nowcasting, Aditya Nagarajan

Masters Theses

Recent advances in cloud-based big-data technologies now makes data driven solutions feasible for increasing numbers of scientific computing applications. One such data driven solution approach is machine learning where patterns in large data sets are brought to the surface by finding complex mathematical relationships within the data. Nowcasting or short-term prediction of rainfall in a given region is an important problem in meteorology. In this thesis we explore the nowcasting problem through a data driven approach by formulating it as a machine learning problem.

State-of-the-art nowcasting systems today are based on numerical models which describe the physical processes leading to …