Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Computer Engineering

Remote/Autonomous Sentry Gun Platform, Angelo Gagliardi, Dante Gagliardi Dec 2013

Remote/Autonomous Sentry Gun Platform, Angelo Gagliardi, Dante Gagliardi

Electrical Engineering

This senior project involves the complete system design and construction of a "Nerf" sentry gun to replace an armed guard. We aimed to develop a compact and highly mobile defense system that allows operational flexibility. The sentry gun can autonomously track and shoot at moving targets, while also allowing a user to remotely access and control the gun via computer. The mobility, hardiness, and functionality of this system allows a reliable replacement for human beings in harsh and hostile environments; ultimately sparing a life.


Implementing A Matlab Based Attitude Determination Algorithm In C Within The Polysat Software Architecture, Dominic Bertolino Mar 2013

Implementing A Matlab Based Attitude Determination Algorithm In C Within The Polysat Software Architecture, Dominic Bertolino

Computer Engineering

This project focuses on one component within a complete attitude determination and control system (ADCS) for a small satellite. The component consists of porting the algorithm that determines the current attitude of the satellite developed by AERO students / team members. The original algorithm has been developed in MATLAB code. The actual algorithm will be simulated and tested in MATLAB by the AEROs. The porting consisted of integrating the pieces into the custom PolySat software environment in C. Testing was done to verify the ported component corresponded to the original MATLAB component as well as verify its runtime on the …


Adaptive Nonlinear Control For Autonomous Ground Vehicles, William Spencer Black Jan 2013

Adaptive Nonlinear Control For Autonomous Ground Vehicles, William Spencer Black

Open Access Theses

We present the background and motivation for ground vehicle autonomy, and focus on uses for space-exploration. Using a simple design example of an autonomous ground vehicle we derive the equations of motion. After providing the mathematical background for nonlinear systems and control we present two common methods for exactly linearizing nonlinear systems, feedback linearization and backstepping. We use these in combination with three adaptive control methods: model reference adaptive control, adaptive sliding mode control, and extremum-seeking model reference adaptive control. We show the performances of each combination through several simulation results. We then consider disturbances in the system, and design …


Dynamics And Control Of Higher-Order Nonholonomic Systems, Jaime Rubio HerváS Jan 2013

Dynamics And Control Of Higher-Order Nonholonomic Systems, Jaime Rubio HerváS

Doctoral Dissertations and Master's Theses

A theoretical framework is established for the control of higher-order nonholonomic systems, defined as systems that satisfy higher-order nonintegrable constraints. A model for such systems is developed in terms of differential-algebraic equations defined on a higher-order tangent bundle. A number of control-theoretic properties such as nonintegrability, controllability, and stabilizability are presented. Higher-order nonholonomic systems are shown to be strongly accessible and, under certain conditions, small time locally controllable at any equilibrium. There are important examples of higher-order nonholonomic systems that are asymptotically stabilizable via smooth feedback, including space vehicles with multiple slosh modes and Prismatic-Prismatic-Revolute (PPR) robots moving open liquid …


Nonlinear Control For Dual Quaternion Systems, William D. Price Jan 2013

Nonlinear Control For Dual Quaternion Systems, William D. Price

Doctoral Dissertations and Master's Theses

The motion of rigid bodies includes three degrees of freedom (DOF) for rotation, generally referred to as roll, pitch and yaw, and 3 DOF for translation, generally described as motion along the x, y and z axis, for a total of 6 DOF. Many complex mechanical systems exhibit this type of motion, with constraints, such as complex humanoid robotic systems, multiple ground vehicles, unmanned aerial vehicles (UAVs), multiple spacecraft vehicles, and even quantum mechanical systems. These motions historically have been analyzed independently, with separate control algorithms being developed for rotation and translation. The goal of this research is to study …