Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Computer Engineering

Linear Matrix Inequality-Based Nonlinear Adaptive Robust Control With Application To Unmanned Aircraft Systems, David William Kun Apr 2015

Linear Matrix Inequality-Based Nonlinear Adaptive Robust Control With Application To Unmanned Aircraft Systems, David William Kun

Open Access Theses

Unmanned aircraft systems (UASs) are gaining popularity in civil and commercial applications as their lightweight on-board computers become more powerful and affordable, their power storage devices improve, and the Federal Aviation Administration addresses the legal and safety concerns of integrating UASs in the national airspace. Consequently, many researchers are pursuing novel methods to control UASs in order to improve their capabilities, dependability, and safety assurance. The nonlinear control approach is a common choice as it offers several benefits for these highly nonlinear aerospace systems (e.g., the quadrotor). First, the controller design is physically intuitive and is derived from well known …


Rapid Indirect Trajectory Optimization On Highly Parallel Computing Architectures, Thomas Antony Oct 2014

Rapid Indirect Trajectory Optimization On Highly Parallel Computing Architectures, Thomas Antony

Open Access Theses

Trajectory optimization is a field which can benefit greatly from the advantages offered by parallel computing. The current state-of-the-art in trajectory optimization focuses on the use of direct optimization methods, such as the pseudo-spectral method. These methods are favored due to their ease of implementation and large convergence regions while indirect methods have largely been ignored in the literature in the past decade except for specific applications in astrodynamics. It has been shown that the shortcomings conventionally associated with indirect methods can be overcome by the use of a continuation method in which complex trajectory solutions are obtained by solving …


Principle Of Bio-Inspired Insect Wing Rotational Hinge Design, Fan Fei Oct 2014

Principle Of Bio-Inspired Insect Wing Rotational Hinge Design, Fan Fei

Open Access Theses

A principle for designing and fabricating bio-inspired miniature artificial insect flapping wing using flexure rotational hinge design is presented. A systematic approach of selecting rotational hinge stiffness value is proposed. Based on the understanding of flapping wing aerodynamics, a dynamic simulation is constructed using the established quasi-steady model and the wing design. Simulations were performed to gain insight on how different parameters affect the wing rotational response. Based on system resonance a model to predict the optimal rotational hinge stiffness based on given wing parameter and flapping wing kinematic is proposed. By varying different wing parameters, the proposed method is …


Joint Architecture For Reusable Vehicle-Integrated Software (J.A.R.V.I.S), Anthony Mark Kane Oct 2014

Joint Architecture For Reusable Vehicle-Integrated Software (J.A.R.V.I.S), Anthony Mark Kane

Open Access Theses

An integrated software architecture for development of unmanned research vehicles is developed. It has been created under the premise that all unmanned vehicles require a core set of functionality that is common across platforms and that priority should be to the readability and reusability of the code base. The architecture defines the top-level system interfaces allowing internal algorithms to be manipulated without affecting the rest of the system. A robust aerospace toolbox has been developed that provides a means to rapidly prototype algorithms without the need of recreating commonly used functions or the use of expensive, proprietary software.


Adaptive Nonlinear Control For Autonomous Ground Vehicles, William Spencer Black Jan 2013

Adaptive Nonlinear Control For Autonomous Ground Vehicles, William Spencer Black

Open Access Theses

We present the background and motivation for ground vehicle autonomy, and focus on uses for space-exploration. Using a simple design example of an autonomous ground vehicle we derive the equations of motion. After providing the mathematical background for nonlinear systems and control we present two common methods for exactly linearizing nonlinear systems, feedback linearization and backstepping. We use these in combination with three adaptive control methods: model reference adaptive control, adaptive sliding mode control, and extremum-seeking model reference adaptive control. We show the performances of each combination through several simulation results. We then consider disturbances in the system, and design …