Open Access. Powered by Scholars. Published by Universities.®

Computational Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Computational Engineering

Multiscale Modeling Of Carbon Fibers/Graphene Nanoplatelets/Epoxy Hybrid Composites For Aerospace Applications, Hashim Al Mahmud Jan 2020

Multiscale Modeling Of Carbon Fibers/Graphene Nanoplatelets/Epoxy Hybrid Composites For Aerospace Applications, Hashim Al Mahmud

Dissertations, Master's Theses and Master's Reports

Significant research effort has been dedicated for decades to improve the mechanical properties of aerospace polymer-based composite materials. Lightweight epoxy-based composite materials have increasingly replaced the comparatively heavy and expensive metal alloys used in aeronautical and aerospace structural components. In particular, carbon fibers (CF)/graphene nanoplatelets (GNP)/epoxy hybrid composites can be used for this purpose owing to their high specific stiffness and strength. Therefore, this work has been completed to design, predict, and optimize the effective mechanical properties of CF/GNP/epoxy composite materials at different length scales using a multiscale modeling approach. The work-flow of modeling involves a first step of using …


A Reduced Model For Microbial Electrolysis Cells, Dina Aboelela, Moustafa A. Soliman, Ibrahim Ashour Jan 2020

A Reduced Model For Microbial Electrolysis Cells, Dina Aboelela, Moustafa A. Soliman, Ibrahim Ashour

Chemical Engineering

Microbial electrolysis cells (MECs) are breakthrough technology of cheap hydrogen production with high efficiency. In this paper differential-algebraic equation (DAE) model of a MEC with an algebraic constraint on current was studied, simulated and validated by implementing the model on continuous-flow MECs. Then sensitivity analysis for the system was effectuated. Parameters which have the predominating influence on the current density and hydrogen production rate were defined. This sensitivity analysis was utilized in modeling and validation of the batch-cycle of MEC. After that parameters which have less influence on MEC were eliminated and simplified reduced model was obtained and validated. Finally, …


A Reduced Model For Microbial Fuel Cell, Dina Aboelela, Moustafa A. Soliman, Ibrahim Ashour Jan 2020

A Reduced Model For Microbial Fuel Cell, Dina Aboelela, Moustafa A. Soliman, Ibrahim Ashour

Chemical Engineering

Microbial fuel cells (MFCs) are a group of microbial electrochemical cells (bioreactors) that are used to generate energy from organic waste found in wastewater. MFCs represent a promising method of waste disposal and production of electricity. Scaling up the use of MFCs requires extensive analysis and detailed grasp of the required processes. The current work aimed to study a model of an MFC, and find the optimum parameters needed for maximum energy production. The process was simulated and validated on continuous-flow MFCs with a Columbic efficiency of 162% and 35% COD removal. Sensitivity analysis of the model was performed. The …


Heterogeneous Uncertainty Quantification For Reliability-Based Design Optimization, Mingyang Li Jan 2020

Heterogeneous Uncertainty Quantification For Reliability-Based Design Optimization, Mingyang Li

Dissertations, Master's Theses and Master's Reports

Uncertainty is inherent to real-world engineering systems, and reliability analysis aims at quantitatively measuring the probability that engineering systems successfully perform the intended functionalities under various sources of uncertainties. In this dissertation, heterogeneous uncertainties including input variation, data uncertainty, simulation model uncertainty, and time-dependent uncertainty have been taken into account in reliability analysis and reliability-based design optimization (RBDO). The input variation inherently exists in practical engineering system and can be characterized by statistical modeling methods. Data uncertainty occurs when surrogate models are constructed to replace the simulations or experiments based on a set of training data, while simulation model uncertainty …


Coarse-Grained Dynamically Accurate Simulations Of Ionic Liquids At Vacuum-Interface, Tyler D. Stoffel Jan 2020

Coarse-Grained Dynamically Accurate Simulations Of Ionic Liquids At Vacuum-Interface, Tyler D. Stoffel

Theses and Dissertations--Mechanical Engineering

Ionic liquids, possessing improved properties in many areas of technical application, are excellent candidates as components in development of next-generation technology, including ultra-high energy batteries. If they are thus applied, however, extensive interfacial analysis of any selected ionic configuration will likely be required. Molecular dynamics (MD) provides an advantageous route by which this may be accomplished, but can fall short in observing some phenomena only present at larger time/length scales than it can simulate. Often times this is approached by coarse-graining (CG), with which scope of simulation can be significantly increased. However, coarse-grained MD systems are generally known to produce …