Open Access. Powered by Scholars. Published by Universities.®

Computational Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Computational Engineering

Recent Advances And Machine Learning Techniques On Sickle Cell Disease, Noorh H. Alharbi, Rana O. Bameer, Shahad S. Geddan, Hajar M. Alharbi Dec 2020

Recent Advances And Machine Learning Techniques On Sickle Cell Disease, Noorh H. Alharbi, Rana O. Bameer, Shahad S. Geddan, Hajar M. Alharbi

Future Computing and Informatics Journal

Sickle cell disease is a severe hereditary disease caused by an abnormality of the red blood cells. The current therapeutic decision-making process applied to sickle cell disease includes monitoring a patient’s symptoms and complications and then adjusting the treatment accordingly. This process is time-consuming, which might result in serious consequences for patients’ lives and could lead to irreversible disease complications. Artificial intelligence, specifically machine learning, is a powerful technique that has been used to support medical decisions. This paper aims to review the recently developed machine learning models designed to interpret medical data regarding sickle cell disease. To propose an …


Evaluating Driving Performance Of A Novel Behavior Planning Model On Connected Autonomous Vehicles, Keyur Shah May 2020

Evaluating Driving Performance Of A Novel Behavior Planning Model On Connected Autonomous Vehicles, Keyur Shah

Honors Scholar Theses

Many current algorithms and approaches in autonomous driving attempt to solve the "trajectory generation" or "trajectory following” problems: given a target behavior (e.g. stay in the current lane at the speed limit or change lane), what trajectory should the vehicle follow, and what inputs should the driving agent apply to the throttle and brake to achieve this trajectory? In this work, we instead focus on the “behavior planning” problem—specifically, should an autonomous vehicle change lane or keep lane given the current state of the system?

In addition, current theory mainly focuses on single-vehicle systems, where vehicles do not communicate with …


Edge-Cloud Iot Data Analytics: Intelligence At The Edge With Deep Learning, Ananda Mohon M. Ghosh May 2020

Edge-Cloud Iot Data Analytics: Intelligence At The Edge With Deep Learning, Ananda Mohon M. Ghosh

Electronic Thesis and Dissertation Repository

Rapid growth in numbers of connected devices, including sensors, mobile, wearable, and other Internet of Things (IoT) devices, is creating an explosion of data that are moving across the network. To carry out machine learning (ML), IoT data are typically transferred to the cloud or another centralized system for storage and processing; however, this causes latencies and increases network traffic. Edge computing has the potential to remedy those issues by moving computation closer to the network edge and data sources. On the other hand, edge computing is limited in terms of computational power and thus is not well suited for …


Nonlinear Least Squares 3-D Geolocation Solutions Using Time Differences Of Arrival, Michael V. Bredemann Apr 2020

Nonlinear Least Squares 3-D Geolocation Solutions Using Time Differences Of Arrival, Michael V. Bredemann

Mathematics & Statistics ETDs

This thesis uses a geometric approach to derive and solve nonlinear least squares minimization problems to geolocate a signal source in three dimensions using time differences of arrival at multiple sensor locations. There is no restriction on the maximum number of sensors used. Residual errors reach the numerical limits of machine precision. Symmetric sensor orientations are found that prevent closed form solutions of source locations lying within the null space. Maximum uncertainties in relative sensor positions and time difference of arrivals, required to locate a source within a maximum specified error, are found from these results. Examples illustrate potential requirements …


Deal: Differentially Private Auction For Blockchain Based Microgrids Energy Trading, Muneeb Ul Hassan, Mubashir Husain Rehmani, Jinjun Chen Mar 2020

Deal: Differentially Private Auction For Blockchain Based Microgrids Energy Trading, Muneeb Ul Hassan, Mubashir Husain Rehmani, Jinjun Chen

Publications

Modern smart homes are being equipped with certain renewable energy resources that can produce their own electric energy. From time to time, these smart homes or microgrids are also capable of supplying energy to other houses, buildings, or energy grid in the time of available self-produced renewable energy. Therefore, researches have been carried out to develop optimal trading strategies, and many recent technologies are also being used in combination with microgrids. One such technology is blockchain, which works over decentralized distributed ledger. In this paper, we develop a blockchain based approach for microgrid energy auction. To make this auction more …


Systematic Model-Based Design Assurance And Property-Based Fault Injection For Safety Critical Digital Systems, Athira Varma Jayakumar Jan 2020

Systematic Model-Based Design Assurance And Property-Based Fault Injection For Safety Critical Digital Systems, Athira Varma Jayakumar

Theses and Dissertations

With advances in sensing, wireless communications, computing, control, and automation technologies, we are witnessing the rapid uptake of Cyber-Physical Systems across many applications including connected vehicles, healthcare, energy, manufacturing, smart homes etc. Many of these applications are safety-critical in nature and they depend on the correct and safe execution of software and hardware that are intrinsically subject to faults. These faults can be design faults (Software Faults, Specification faults, etc.) or physically occurring faults (hardware failures, Single-event-upsets, etc.). Both types of faults must be addressed during the design and development of these critical systems. Several safety-critical industries have widely adopted …