Open Access. Powered by Scholars. Published by Universities.®

Computational Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Computational Engineering

A Cfd Study Of Steady Fully Developed Laminar Flow Through A 90-Degree Bend Pipe With A Square Cross-Sectional Area, Subodh Sushant Toraskar Oct 2019

A Cfd Study Of Steady Fully Developed Laminar Flow Through A 90-Degree Bend Pipe With A Square Cross-Sectional Area, Subodh Sushant Toraskar

Mechanical & Aerospace Engineering Theses & Dissertations

Fluid flow through a closed curved conduit has always been a topic of extensive research, as it has many practical and industrial applications. The flow is generally characterized by a presence of secondary flow, vortical motions and pressure losses for different flow regimes. These observed irregularities may positively or negatively impact the flow. They are beneficial for cases where mixing of fluids is required, usually observed for multiphase flow regimes or detrimental for cases involving particles in the fluid. There are also instances where a particle-laden fluid transported through the curved pipe was directly related to corrosion- erosion related problems. …


Distal Placement Of An End-To-Side Bypass Graft Anastomosis: A 3d Computational Study, John Di Cicco, Ayodeji Demuren Jan 2013

Distal Placement Of An End-To-Side Bypass Graft Anastomosis: A 3d Computational Study, John Di Cicco, Ayodeji Demuren

Mechanical & Aerospace Engineering Faculty Publications

A three-dimensional (3D) computational fluid dynamics study of shear rates around distal end-to-side anastomoses has been conducted. Three 51% and three 75% cross-sectional area-reduced 6 mm cylinders were modeled each with a bypass cylinder attached at a 30-degree angle at different placements distal to the constriction. Steady, incompressible, Newtonian blood flow was assumed, and the full Reynolds-averaged Navier-Stokes equations, turbulent kinetic energy, and specific dissipation rate equations were solved on a locally structured multiblock mesh with hexahedral elements. Consequently, distal placement of an end-to-side bypass graft anastomosis was found to have an influence on the shear rate magnitudes. For the …


Lattice Quantum Algorithm For The Schrodinger Wave Equation In 2+1 Dimensions With A Demonstration By Modeling Soliton Instabilities, Jeffrey Yepez, George Vahala, Linda L. Vahala Dec 2005

Lattice Quantum Algorithm For The Schrodinger Wave Equation In 2+1 Dimensions With A Demonstration By Modeling Soliton Instabilities, Jeffrey Yepez, George Vahala, Linda L. Vahala

Electrical & Computer Engineering Faculty Publications

A lattice-based quantum algorithm is presented to model the non-linear Schrödinger-like equations in 2 + 1 dimensions. In this lattice-based model, using only 2 qubits per node, a sequence of unitary collide (qubit-qubit interaction) and stream (qubit translation) operators locally evolve a discrete field of probability amplitudes that in the long-wavelength limit accurately approximates a non-relativistic scalar wave function. The collision operator locally entangles pairs of qubits followed by a streaming operator that spreads the entanglement throughout the two dimensional lattice. The quantum algorithmic scheme employs a non-linear potential that is proportional to the moduli square of the wave function. …