Open Access. Powered by Scholars. Published by Universities.®

Computational Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Computational Engineering

Numerical And Semi-Analytical Estimation Of Convective Heat Transfer Coefficient For Buildings In An Urban-Like Setting, Anwar Demsis Awol Dec 2019

Numerical And Semi-Analytical Estimation Of Convective Heat Transfer Coefficient For Buildings In An Urban-Like Setting, Anwar Demsis Awol

Electronic Thesis and Dissertation Repository

Urban building arrangements such as packing density, orientation and size are known to influence the microclimate surrounding each building. Studies on the impact of urban microclimatic changes on convective heat transfer coefficient (CHTC) from a stock of buildings, however, have been rare in surveyed literature. The present study focuses on numerical and analytical investigation of CHTC from building-like models with homogeneous set of equal and unequal planar and frontal densities. Consequently, the study discusses the CHTC response in relation to broader changes in the urban surface form. Part of the process involves the development of a simplified one-dimensional semi-analytical CHTC …


Large Eddy Simulations Of Vertical Jets In Crossflow, Pranaya Pokharel Oct 2018

Large Eddy Simulations Of Vertical Jets In Crossflow, Pranaya Pokharel

LSU Doctoral Dissertations

Jets in crossflow (JICF) have applications ranging from oil spill to film cooling of turbine blades. Hence, an understanding of the flow physics is important. The majority of the research has been conducted for low velocity ratios between jet and crossflow with round jets. JICF is demonstrated to behave differently for high velocity ratios and different jet shapes. Circular and rectangular jets are commonly used in aircraft applications. Current study focuses on high velocity ratio JICF issuing from both circular and rectangular exit.

For simulating JICF, an in house code “Chem3D” is used with Large Eddy Simulation (LES) to model …


A Stratified Turbulence Formulation And A Turbulent Inflow Boundary Condition For Large-Eddy Simulation Of Complex Terrain Winds, Clancy Umphrey Aug 2015

A Stratified Turbulence Formulation And A Turbulent Inflow Boundary Condition For Large-Eddy Simulation Of Complex Terrain Winds, Clancy Umphrey

Boise State University Theses and Dissertations

There has been an increased interest to forecast winds over complex terrain under realistic stability conditions using spatial resolutions that are much finer than the current practice. This goal is realizable thanks to the computational power of graphics processing units (GPUs). This thesis investigates an immersed boundary (IB) formulation and a turbulent inflow boundary condition within a multi-GPU parallel incompressible wind solver. Katabatic flows over a sloped complex terrain surface under stable stratification remain to be one of the least understood subjects in atmospheric turbulence. Prandtl’s analytical solution for laminar katabatic flow is used to develop an IB formulation to …


Numerical Simulation Of Liquid-Solid Circulating Fluidized Beds, Abbas Dadashi Jan 2014

Numerical Simulation Of Liquid-Solid Circulating Fluidized Beds, Abbas Dadashi

Electronic Thesis and Dissertation Repository

Liquid-solid circulating fluidized bed (LSCFB) reactors are obtaining extensive attraction in the extraction process of functional proteins from industrial broth. A typical LSCFB is comprised of a riser, a downcomer, a liquid-solid separator, a top solids-return pipe and a bottom solids-return pipe. In light of the literature review conducted in this research, a detailed modeling of the protein extraction using an LSCFB ion-exchange system requires a microscopic study including hydrodynamic field, mass transfer and kinetics reactions.

A computational fluid dynamics (CFD) model was developed to simulate the hydrodynamics of the two phase flow in an LSCFB riser. The model is …