Open Access. Powered by Scholars. Published by Universities.®

Computational Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

PDF

University of Tennessee at Chattanooga

Theses/Dissertations

Articles 1 - 4 of 4

Full-Text Articles in Computational Engineering

Validation Of Interpolative Interfaces For Rotorcraft Applications, Adam L. Cofer Dec 2013

Validation Of Interpolative Interfaces For Rotorcraft Applications, Adam L. Cofer

Masters Theses and Doctoral Dissertations

The study uses computational methods to simulate fluid flow on the NASA ROBIN helicopter model and on a simplified rotor geometry previously tested at Mississippi State. The ROBIN model and the rotor are run using an unstructured grid. Results from the Tenasi flow solver are compared against both simulated and wind tunnel data. Tenasi is an unstructured, Reynolds Averaged Navier-Stokes (RANS) solver developed at the SimCenter: National Center for Computational Engineering, located at the University of Tennessee at Chattanooga. Steady-state results for the isolated ROBIN fuselage and unsteady results for both fuselage and rotor systems are computed. In the unsteady …


Stabilized Finite Elements For Compressible Turbulent Navier-Stokes, Jon Taylor Erwin Dec 2013

Stabilized Finite Elements For Compressible Turbulent Navier-Stokes, Jon Taylor Erwin

Masters Theses and Doctoral Dissertations

In this research a stabilized finite element approach is utilized in the development of a high-order flow solver for compressible turbulent flows. The Reynolds averaged Navier-Stokes (RANS) equations and modified Spalart-Almaras (SA) turbulence model are discretized using the streamline/upwind Petrov-Galerkin (SUPG) scheme. A fully implicit methodology is used to obtain steady state solutions or to drive unsteady problems at each time step. Order of accuracy is assessed for inviscid and viscous flows in two and three dimensions via the method of manufactured solutions. Proper treatment of curved surface geometries is of vital importance in high-order methods, especially when high aspect …


2-D Cfd Design Of The Cross-Sectional Shape Of Arterial Stents, Kristen Karman Dec 2013

2-D Cfd Design Of The Cross-Sectional Shape Of Arterial Stents, Kristen Karman

Masters Theses and Doctoral Dissertations

An approach for desigining arterial stents to maximize wall shear stress is presented. A cost equation to maximize wall shear stress is derived and then inverted into a minimization problem for the optimizer. A 2-D mixed-element finite-volume scheme for solving the compressible Navier-Stokes equations is implemented. A paramaterization of the cross- sectional shape of the stent wire using Hicks-Henne functions is described. The strategies used in the commercial optimization software, DAKOTA, to minimize the cost equation are described. The solver is validated using well known fluid flow test cases and is shown to match other published computed results for bloodflow …


Extension Of A High-Order Petrov-Galerkin Implementation Applied To Non-Radiating And Radar Cross Section Geometries, William L. Shoemake Dec 2013

Extension Of A High-Order Petrov-Galerkin Implementation Applied To Non-Radiating And Radar Cross Section Geometries, William L. Shoemake

Masters Theses and Doctoral Dissertations

Capabilities of a high-order Petrov-Galerkin solver are expanded to include N-port systems. Tait-Bryan angles are employed to launch electro-magnetic waves in arbitrary directions allowing off axis ports to be driven. The transverse-electric (TE) formulation is added allowing waveguide geometries to be driven directly. A grid convergence study is performed on a coax-driven waveguide system. Physical data are matched to a hybrid-T junction (magic-T) electromagnetic waveguide structure to verify the TE driving formulation along with the Tait-Bryan angles and modified post-processing routines. A simple sphere case is used to exercise the radar cross section (RCS) routines and to examine the benefits …