Open Access. Powered by Scholars. Published by Universities.®

Civil and Environmental Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2023

Other Civil and Environmental Engineering

Crop water productivity

Articles 1 - 2 of 2

Full-Text Articles in Civil and Environmental Engineering

Toward Automated Irrigation Management With Integrated Crop Water Stress Index And Spatial Soil Water Balance, Sandeep Bhatti, Derek M. Heeren, Susan A. O’Shaughnessy, Christopher M. U. Neale, Jacob Larue, Steve Melvin, Eric Wilkening, Geng Bai May 2023

Toward Automated Irrigation Management With Integrated Crop Water Stress Index And Spatial Soil Water Balance, Sandeep Bhatti, Derek M. Heeren, Susan A. O’Shaughnessy, Christopher M. U. Neale, Jacob Larue, Steve Melvin, Eric Wilkening, Geng Bai

Biological Systems Engineering: Papers and Publications

Decision support systems intended for precision irrigation aim at reducing irrigation applications while optimizing crop yield to achieve maximum crop water productivity (CWP). These systems incorporate on-site sensor data, remote sensing inputs, and advanced algorithms with spatial and temporal characteristics to compute precise crop water needs. The availability of variable rate irrigation (VRI) systems enables irrigation applications at a sub-field scale. The combination of an appropriate VRI system along with a precise decision support system would be ideal for improved CWP. The objective of this study was to compare and evaluate two decision support systems in terms of seasonal applied …


Toward Automated Irrigation Management With Integrated Crop Water Stress Index And Spatial Soil Water Balance, Sandeep Bhatti, Derek M. Heeren, Susan A. O’Shaughnessy, Christopher M. U. Neale, Jacob Larue, Steve Melvin, Eric Wilkening, Geng Bai May 2023

Toward Automated Irrigation Management With Integrated Crop Water Stress Index And Spatial Soil Water Balance, Sandeep Bhatti, Derek M. Heeren, Susan A. O’Shaughnessy, Christopher M. U. Neale, Jacob Larue, Steve Melvin, Eric Wilkening, Geng Bai

Biological Systems Engineering: Papers and Publications

Decision support systems intended for precision irrigation aim at reducing irrigation applications while optimizing crop yield to achieve maximum crop water productivity (CWP). These systems incorporate on-site sensor data, remote sensing inputs, and advanced algorithms with spatial and temporal characteristics to compute precise crop water needs. The availability of variable rate irrigation (VRI) systems enables irrigation applications at a sub-field scale. The combination of an appropriate VRI system along with a precise decision support system would be ideal for improved CWP. The objective of this study was to compare and evaluate two decision support systems in terms of seasonal applied …