Open Access. Powered by Scholars. Published by Universities.®

Civil and Environmental Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Civil and Environmental Engineering

The Combined Impact Of Redcedar Encroachment And Climate Change On Water Resources In The Nebraska Sand Hills, Yaser Kishawi, Aaron R. Mittelstet, Zablon Adane, Nawaraj Shrestha, Paolo Nasta Dec 2022

The Combined Impact Of Redcedar Encroachment And Climate Change On Water Resources In The Nebraska Sand Hills, Yaser Kishawi, Aaron R. Mittelstet, Zablon Adane, Nawaraj Shrestha, Paolo Nasta

Department of Biological Systems Engineering: Papers and Publications

The Nebraska Sand Hills (NSH) is considered a major recharge zone for the High Plains Aquifer in the central United States. The uncontrolled expansion of the eastern redcedar (Juniperus Virginiana) under climate warming is posing threats to surface water and groundwater resources. The combined impact of land use and climate change on the water balance in the Upper Middle Loup River watershed (4,954 km2) in the NSH was evaluated by simulating different combination of model scenarios using the Soil Water Assessment Tool (SWAT) model. A total of 222 climate models were ranked according to the aridity …


Behavior Of Completely Automated Evapotranspiration Estimation (Eemetric), Atiqullah Atif Dec 2022

Behavior Of Completely Automated Evapotranspiration Estimation (Eemetric), Atiqullah Atif

Department of Civil and Environmental Engineering: Dissertations, Theses, and Student Research

Evapotranspiration (ET) is the second-largest component in the water balance equation, globally consuming 70% of the earth’s annual precipitation. Accurate and consistent estimation of ET is essential for ensuring water resources sustainability, proper management, planning, and regulations of water resources. Though a 100% accurate estimation of ET may not be feasible with the current technology, there are proven techniques that give us estimates of ET we can heavily rely on. Mapping Evapotranspiration at High Resolution with Internalized Calibration (METRIC) is a widely used surface energy balance model that produces relatively accurate ET maps utilizing remote sensing data and requires skilled …


Comparison Of Crop Water Use Estimation Methodologies In Irrigated Crops, Laura Christiansen Dec 2022

Comparison Of Crop Water Use Estimation Methodologies In Irrigated Crops, Laura Christiansen

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

As increasing drought events limit water resources available for irrigation, farmers and other water users are looking for ways to monitor how much water crops use over a growing season. The amount of water used by crops over time is the evapotranspiration (ET) rate. This study compares different methods for ET estimation to recommend methods to water users based on their accuracy, efficiency, and accessibility. Each method was used to estimate ET for sprinkler-irrigated corn and alfalfa fields in Modena, UT over the 2021 growing season. The Soil Moisture based ET (SMET) method was used to estimate ET based on …


Dynamics Of Crop Evapotranspiration Of Four Major Crops On A Large Commercial Farm: Case Of The Navajo Agricultural Products Industry, New Mexico, Usa, Koffi Djaman, Komlan Koudahe, Ali T. Mohammed Oct 2022

Dynamics Of Crop Evapotranspiration Of Four Major Crops On A Large Commercial Farm: Case Of The Navajo Agricultural Products Industry, New Mexico, Usa, Koffi Djaman, Komlan Koudahe, Ali T. Mohammed

Department of Biological Systems Engineering: Papers and Publications

Crop evapotranspiration (ETa) is the main source of water loss in farms and watersheds, and with its effects felt at a regional scale, it calls for irrigation professionals and water resource managers to accurately assess water requirements to meet crop water use. On a multi-crop commercial farm, different factors affect cropland allocation, among which crop evapotranspiration is one of the most important factors regarding the seasonally or annually available water resources for irrigation in combination with the in-season effective precipitation. The objective of the present study was to estimate crop evapotranspiration for four major crops grown on the Navajo Agricultural …


Crop Response To Thermal Stress Without Yield Loss In Irrigated Maize And Soybean In Nebraska, Sandeep Bhatti, Derek M. Heeren, Steven R. Evett, Susan A. O'Shaughnessy, Daran Rudnick, Trenton E. Franz, Yufeng Ge, Christopher M.U. Neale Sep 2022

Crop Response To Thermal Stress Without Yield Loss In Irrigated Maize And Soybean In Nebraska, Sandeep Bhatti, Derek M. Heeren, Steven R. Evett, Susan A. O'Shaughnessy, Daran Rudnick, Trenton E. Franz, Yufeng Ge, Christopher M.U. Neale

Department of Biological Systems Engineering: Papers and Publications

Thermal sensing provides rapid and accurate estimation of crop water stress through canopy temperature data. Canopy temperature is highly dependent on the transpiration rate of the leaves. It is usually assumed that any reduction in crop evapotranspiration (ET) leads to crop yield loss. As a result, an increase in canopy temperature due to a decrease in crop ET would indicate crop yield loss. This research evaluated the hypothesis that crop water stress could be detected using canopy temperature measurements (increased leaf temperature) from infrared thermometers (IRTs) before incurring crop yield loss. This would be possible in a narrow range when …


Real-Time Irrigation Scheduling Of Maize Using Degrees Above Non-Stressed (Dans) Index In Semi-Arid Environment, Hope Njuki Nakabuye, Daran Rudnick, Kendall C. Dejonge, Tsz Him Lo, Derek M. Heeren, Xin Qiao, Trenton E. Franz, Abia Katimbo, Jiaming Duan Sep 2022

Real-Time Irrigation Scheduling Of Maize Using Degrees Above Non-Stressed (Dans) Index In Semi-Arid Environment, Hope Njuki Nakabuye, Daran Rudnick, Kendall C. Dejonge, Tsz Him Lo, Derek M. Heeren, Xin Qiao, Trenton E. Franz, Abia Katimbo, Jiaming Duan

Department of Biological Systems Engineering: Papers and Publications

Irrigation scheduling methods have been used to determine the timing and amount of water applied to crops. Scheduling techniques can include measurement of soil water content, quantification of crop water use, and monitoring of crop physiological response to water stress. The aim of this study was to evaluate the performance of a simplified crop canopy temperature measurement (CTM) method as Irrigation Principles. Soil and Water Conservation Engineera technique to schedule irrigation for maize. Specifically, the Degrees Above Non-Stressed (DANS) index, which suggests water stress when canopy temperature exceeds the non-stressed canopy temperature (Tcns), was determined by estimating T …


Learning From Machines: Insights In Forest Transpiration Using Machine Learning Methods, Morgan Tholl Jul 2022

Learning From Machines: Insights In Forest Transpiration Using Machine Learning Methods, Morgan Tholl

Dissertations and Theses

Machine learning has been used as a tool to model transpiration for individual sites, but few models are capable of generalizing to new locations without calibration to site data. Using the global SAPFLUXNET database, 95 tree sap flow data sites were grouped using three clustering strategies: by biome, by tree functional type, and through use of a k-means unsupervised clustering algorithm. Two supervised machine learning algorithms, a random forest algorithm and a neural network algorithm, were used to build machine learning models that predicted transpiration for each cluster. The performance and feature importance in each model were analyzed and compared …


Development Of A Decision-Making Tool For Prediction Of Rainfall-Induced Landslides, Faisal Shakib Ahmed Jan 2022

Development Of A Decision-Making Tool For Prediction Of Rainfall-Induced Landslides, Faisal Shakib Ahmed

Theses and Dissertations--Civil Engineering

Landslides are frequently observed in mountainous places following prolonged periods of rain, frequently resulting in substantial topography changes. They pose a significant risk to human lives and the built environment globally, particularly in areas prone to excessive rainfall. While slope failures can occur because of human-caused factors such as slope loading or toe cutting for construction purposes, many failures occur because of rainfall penetrating an otherwise stable slope. A greater understanding of the characteristics and mechanics of landslides is consequently critical for geotechnical research, particularly in evaluating prospective mitigation strategies. The potential of slope failure is a primary consideration when …