Open Access. Powered by Scholars. Published by Universities.®

Civil and Environmental Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Evapotranspiration

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 60

Full-Text Articles in Civil and Environmental Engineering

Assessment Of Satellite-Based Water Requirements For A Drip-Irrigated Apple Orchard In Mediterranean Agroclimatic Conditions, Daniel De La Fuente-Saiz, Samuel Ortega-Farias, Marcos Carrasco-Benavides, Samuel Ortega-Salazar, Fei Tian, Sufen Wang, Yi Liu Apr 2024

Assessment Of Satellite-Based Water Requirements For A Drip-Irrigated Apple Orchard In Mediterranean Agroclimatic Conditions, Daniel De La Fuente-Saiz, Samuel Ortega-Farias, Marcos Carrasco-Benavides, Samuel Ortega-Salazar, Fei Tian, Sufen Wang, Yi Liu

Department of Civil and Environmental Engineering: Faculty Publications

Accurate assessment of evapotranspiration (ETa) and crop coefficient (Kc) is crucial for optimizing irrigation practices in water-scarce regions. While satellite-based surface energy balance models offer a promising solution, their application to sparse canopies like apple orchards requires specific validation. This study investigated the spatial and temporal dynamics of ETa and Kc in a drip-irrigated ‘Pink Lady’ apple orchard under Mediterranean conditions over three growing seasons (2012/13, 2013/14, 2014/15). The METRIC model, incorporating calibrated sub-models for leaf area index (LAI), surface roughness (Zom), and soil heat flux (G), was employed to estimate ETa and Kc. These estimates were validated …


Soybean Crop Coefficients Under Different Seeding Rates And Full And Limited Irrigation And Rainfed Management, Suat Irmak, Rupinder Sandhu May 2023

Soybean Crop Coefficients Under Different Seeding Rates And Full And Limited Irrigation And Rainfed Management, Suat Irmak, Rupinder Sandhu

Department of Biological Systems Engineering: Papers and Publications

The effects of soybean seeding rates on evapotranspiration (ETc) and grassand alfalfa-reference crop coefficients (Kco and Kcr) were investigated under five seeding rates (185,250, 247,000, 308,750, 370,500 and 432,250 seeds ha-1) (62, 82, 103, 124 and 144% of the recommended seeding rate of 300,000 seeds ha-1 in the experimental region) and different irrigation strategies (i.e. full irrigation treatment [FIT], limited irrigation of 75% FIT and 50% FIT and rainfed treatment). Kco and Kcr values were developed for each soybean growth stage. The seasonal ETc ranged from 460 mm for …


Toward Automated Irrigation Management With Integrated Crop Water Stress Index And Spatial Soil Water Balance, Sandeep Bhatti, Derek M. Heeren, Susan A. O’Shaughnessy, Christopher M. U. Neale, Jacob Larue, Steve Melvin, Eric Wilkening, Geng Bai May 2023

Toward Automated Irrigation Management With Integrated Crop Water Stress Index And Spatial Soil Water Balance, Sandeep Bhatti, Derek M. Heeren, Susan A. O’Shaughnessy, Christopher M. U. Neale, Jacob Larue, Steve Melvin, Eric Wilkening, Geng Bai

Department of Biological Systems Engineering: Papers and Publications

Decision support systems intended for precision irrigation aim at reducing irrigation applications while optimizing crop yield to achieve maximum crop water productivity (CWP). These systems incorporate on-site sensor data, remote sensing inputs, and advanced algorithms with spatial and temporal characteristics to compute precise crop water needs. The availability of variable rate irrigation (VRI) systems enables irrigation applications at a sub-field scale. The combination of an appropriate VRI system along with a precise decision support system would be ideal for improved CWP. The objective of this study was to compare and evaluate two decision support systems in terms of seasonal applied …


Toward Automated Irrigation Management With Integrated Crop Water Stress Index And Spatial Soil Water Balance, Sandeep Bhatti, Derek M. Heeren, Susan A. O’Shaughnessy, Christopher M. U. Neale, Jacob Larue, Steve Melvin, Eric Wilkening, Geng Bai May 2023

Toward Automated Irrigation Management With Integrated Crop Water Stress Index And Spatial Soil Water Balance, Sandeep Bhatti, Derek M. Heeren, Susan A. O’Shaughnessy, Christopher M. U. Neale, Jacob Larue, Steve Melvin, Eric Wilkening, Geng Bai

Department of Biological Systems Engineering: Papers and Publications

Decision support systems intended for precision irrigation aim at reducing irrigation applications while optimizing crop yield to achieve maximum crop water productivity (CWP). These systems incorporate on-site sensor data, remote sensing inputs, and advanced algorithms with spatial and temporal characteristics to compute precise crop water needs. The availability of variable rate irrigation (VRI) systems enables irrigation applications at a sub-field scale. The combination of an appropriate VRI system along with a precise decision support system would be ideal for improved CWP. The objective of this study was to compare and evaluate two decision support systems in terms of seasonal applied …


The Effect Of Relative Humidity On Eddy Covariance Latent Heat Flux Measurements And Its Implication For Partitioning Into Transpiration And Evaporation, Weijie Zhang, Martin Jung, Mirco Migliavacca, Rafael Poyatos, Diego G. Miralles, Tarek S. El-Madany, Marta Galvagno, Arnaud Carrara, Nicola Arriga, Andreas Ibrom, Ivan Mammarella, Dario Papale, Jamie R. Cleverly, Michael Liddell, Georg Wohlfahrt, Christian Markwitz, Matthias Mauder, Eugenie Paul-Limoges, Marius Schmidt, Sebastian Wolf, Christian Brümmer, M. Altaf Arain, Silvano Fares, Tomomichi Kato, Jonas Ardö, Walter Oechel, Chad Hanson, Mika Korkiakoski, Sébastien Biraud, Rainer Steinbrecher, Dave Billesbach, Leonardo Montagnani, William Woodgate, Changliang Shao, Nuno Carvalhais, Markus Reichstein, Jacob A. Nelson Mar 2023

The Effect Of Relative Humidity On Eddy Covariance Latent Heat Flux Measurements And Its Implication For Partitioning Into Transpiration And Evaporation, Weijie Zhang, Martin Jung, Mirco Migliavacca, Rafael Poyatos, Diego G. Miralles, Tarek S. El-Madany, Marta Galvagno, Arnaud Carrara, Nicola Arriga, Andreas Ibrom, Ivan Mammarella, Dario Papale, Jamie R. Cleverly, Michael Liddell, Georg Wohlfahrt, Christian Markwitz, Matthias Mauder, Eugenie Paul-Limoges, Marius Schmidt, Sebastian Wolf, Christian Brümmer, M. Altaf Arain, Silvano Fares, Tomomichi Kato, Jonas Ardö, Walter Oechel, Chad Hanson, Mika Korkiakoski, Sébastien Biraud, Rainer Steinbrecher, Dave Billesbach, Leonardo Montagnani, William Woodgate, Changliang Shao, Nuno Carvalhais, Markus Reichstein, Jacob A. Nelson

Department of Biological Systems Engineering: Papers and Publications

While the eddy covariance (EC) technique is a well-established method for measuring water fluxes (i.e., evaporation or 'evapotranspiration’, ET), the measurement is susceptible to many uncertainties. One such issue is the potential underestimation of ET when relative humidity (RH) is high (>70%), due to low-pass filtering with some EC systems. Yet, this underestimation for different types of EC systems (e.g. open-path or closed-path sensors) has not been characterized for synthesis datasets such as the widely used FLUXNET2015 dataset. Here, we assess the RH-associated underestimation of latent heat fluxes (LE, or ET) from different EC systems for 163 sites in …


The Combined Impact Of Redcedar Encroachment And Climate Change On Water Resources In The Nebraska Sand Hills, Yaser Kishawi, Aaron R. Mittelstet, Zablon Adane, Nawaraj Shrestha, Paolo Nasta Dec 2022

The Combined Impact Of Redcedar Encroachment And Climate Change On Water Resources In The Nebraska Sand Hills, Yaser Kishawi, Aaron R. Mittelstet, Zablon Adane, Nawaraj Shrestha, Paolo Nasta

Department of Biological Systems Engineering: Papers and Publications

The Nebraska Sand Hills (NSH) is considered a major recharge zone for the High Plains Aquifer in the central United States. The uncontrolled expansion of the eastern redcedar (Juniperus Virginiana) under climate warming is posing threats to surface water and groundwater resources. The combined impact of land use and climate change on the water balance in the Upper Middle Loup River watershed (4,954 km2) in the NSH was evaluated by simulating different combination of model scenarios using the Soil Water Assessment Tool (SWAT) model. A total of 222 climate models were ranked according to the aridity …


Behavior Of Completely Automated Evapotranspiration Estimation (Eemetric), Atiqullah Atif Dec 2022

Behavior Of Completely Automated Evapotranspiration Estimation (Eemetric), Atiqullah Atif

Department of Civil and Environmental Engineering: Dissertations, Theses, and Student Research

Evapotranspiration (ET) is the second-largest component in the water balance equation, globally consuming 70% of the earth’s annual precipitation. Accurate and consistent estimation of ET is essential for ensuring water resources sustainability, proper management, planning, and regulations of water resources. Though a 100% accurate estimation of ET may not be feasible with the current technology, there are proven techniques that give us estimates of ET we can heavily rely on. Mapping Evapotranspiration at High Resolution with Internalized Calibration (METRIC) is a widely used surface energy balance model that produces relatively accurate ET maps utilizing remote sensing data and requires skilled …


Dynamics Of Crop Evapotranspiration Of Four Major Crops On A Large Commercial Farm: Case Of The Navajo Agricultural Products Industry, New Mexico, Usa, Koffi Djaman, Komlan Koudahe, Ali T. Mohammed Oct 2022

Dynamics Of Crop Evapotranspiration Of Four Major Crops On A Large Commercial Farm: Case Of The Navajo Agricultural Products Industry, New Mexico, Usa, Koffi Djaman, Komlan Koudahe, Ali T. Mohammed

Department of Biological Systems Engineering: Papers and Publications

Crop evapotranspiration (ETa) is the main source of water loss in farms and watersheds, and with its effects felt at a regional scale, it calls for irrigation professionals and water resource managers to accurately assess water requirements to meet crop water use. On a multi-crop commercial farm, different factors affect cropland allocation, among which crop evapotranspiration is one of the most important factors regarding the seasonally or annually available water resources for irrigation in combination with the in-season effective precipitation. The objective of the present study was to estimate crop evapotranspiration for four major crops grown on the Navajo Agricultural …


Crop Response To Thermal Stress Without Yield Loss In Irrigated Maize And Soybean In Nebraska, Sandeep Bhatti, Derek M. Heeren, Steven R. Evett, Susan A. O'Shaughnessy, Daran Rudnick, Trenton E. Franz, Yufeng Ge, Christopher M.U. Neale Sep 2022

Crop Response To Thermal Stress Without Yield Loss In Irrigated Maize And Soybean In Nebraska, Sandeep Bhatti, Derek M. Heeren, Steven R. Evett, Susan A. O'Shaughnessy, Daran Rudnick, Trenton E. Franz, Yufeng Ge, Christopher M.U. Neale

Department of Biological Systems Engineering: Papers and Publications

Thermal sensing provides rapid and accurate estimation of crop water stress through canopy temperature data. Canopy temperature is highly dependent on the transpiration rate of the leaves. It is usually assumed that any reduction in crop evapotranspiration (ET) leads to crop yield loss. As a result, an increase in canopy temperature due to a decrease in crop ET would indicate crop yield loss. This research evaluated the hypothesis that crop water stress could be detected using canopy temperature measurements (increased leaf temperature) from infrared thermometers (IRTs) before incurring crop yield loss. This would be possible in a narrow range when …


Real-Time Irrigation Scheduling Of Maize Using Degrees Above Non-Stressed (Dans) Index In Semi-Arid Environment, Hope Njuki Nakabuye, Daran Rudnick, Kendall C. Dejonge, Tsz Him Lo, Derek M. Heeren, Xin Qiao, Trenton E. Franz, Abia Katimbo, Jiaming Duan Sep 2022

Real-Time Irrigation Scheduling Of Maize Using Degrees Above Non-Stressed (Dans) Index In Semi-Arid Environment, Hope Njuki Nakabuye, Daran Rudnick, Kendall C. Dejonge, Tsz Him Lo, Derek M. Heeren, Xin Qiao, Trenton E. Franz, Abia Katimbo, Jiaming Duan

Department of Biological Systems Engineering: Papers and Publications

Irrigation scheduling methods have been used to determine the timing and amount of water applied to crops. Scheduling techniques can include measurement of soil water content, quantification of crop water use, and monitoring of crop physiological response to water stress. The aim of this study was to evaluate the performance of a simplified crop canopy temperature measurement (CTM) method as Irrigation Principles. Soil and Water Conservation Engineera technique to schedule irrigation for maize. Specifically, the Degrees Above Non-Stressed (DANS) index, which suggests water stress when canopy temperature exceeds the non-stressed canopy temperature (Tcns), was determined by estimating T …


Sharpening Ecostress And Viirs Land Surface Temperature Using Harmonized Landsat-Sentinel Surface Reflectances, Jie Xue, Martha C. Anderson, Feng Gao, Christopher Hain, Liang Sun, Yun Yang, Kyle R. Knipper, William P. Kustas, Alfonso F. Torres-Rua, Mitch Schull Sep 2020

Sharpening Ecostress And Viirs Land Surface Temperature Using Harmonized Landsat-Sentinel Surface Reflectances, Jie Xue, Martha C. Anderson, Feng Gao, Christopher Hain, Liang Sun, Yun Yang, Kyle R. Knipper, William P. Kustas, Alfonso F. Torres-Rua, Mitch Schull

Civil and Environmental Engineering Faculty Publications

Land surface temperature (LST) is a key diagnostic indicator of agricultural water use and crop stress. LST data retrieved from thermal infrared (TIR) band imagery, however, tend to have a coarser spatial resolution (e.g., 100 m for Landsat 8) than surface reflectance (SR) data collected from shortwave bands on the same instrument (e.g., 30 m for Landsat). Spatial sharpening of LST data using the higher resolution multi-band SR data provides an important path for improved agricultural monitoring at sub-field scales. A previously developed Data Mining Sharpener (DMS) approach has shown great potential in the sharpening of Landsat LST using Landsat …


Assessment Of An Automated Calibration Of The Sebal Algorithm To Estimate Dry-Season Surface-Energy Partitioning In A Forest–Savanna Transition In Brazil, Leonardo Laipelt, Anderson Luis Ruhoff, Ayan Santos Fleischmann, Rafael Henrique Bloedow Kayser, Elisa De Mello Kich, Humberto Ribeiro Da Rocha, Christopher Michael Usher Neale Mar 2020

Assessment Of An Automated Calibration Of The Sebal Algorithm To Estimate Dry-Season Surface-Energy Partitioning In A Forest–Savanna Transition In Brazil, Leonardo Laipelt, Anderson Luis Ruhoff, Ayan Santos Fleischmann, Rafael Henrique Bloedow Kayser, Elisa De Mello Kich, Humberto Ribeiro Da Rocha, Christopher Michael Usher Neale

Daugherty Water for Food Global Institute: Faculty Publications

Evapotranspiration (ET) provides a strong connection between surface energy and hydrological cycles. Advancements in remote sensing techniques have increased our understanding of energy and terrestrial water balances as well as the interaction between surface and atmosphere over large areas. In this study, we computed surface energy fluxes using the Surface Energy Balance Algorithm for Land (SEBAL) algorithm and a simplified adaptation of the CIMEC (Calibration using Inverse Modeling at Extreme Conditions) process for automated endmember selection. Our main purpose was to assess and compare the accuracy of the automated calibration of the SEBAL algorithm using two different sources of meteorological …


Effects Of Surface Heterogeneity Due To Drip Irrigation On Scintillometer Estimates Of Sensible, Latent Heat Fluxes And Evapotranspiration Over Vineyards, Hatim M. E. Geli, José González-Piqueras, Christopher M. U. Neale, Claudio Balbontín, Isidro Campos, Alfonso Calera Jan 2020

Effects Of Surface Heterogeneity Due To Drip Irrigation On Scintillometer Estimates Of Sensible, Latent Heat Fluxes And Evapotranspiration Over Vineyards, Hatim M. E. Geli, José González-Piqueras, Christopher M. U. Neale, Claudio Balbontín, Isidro Campos, Alfonso Calera

Daugherty Water for Food Global Institute: Faculty Publications

Accurate estimates of sensible (H) and latent (LE) heat fluxes and actual evapotranspiration (ET) are required for monitoring vegetation growth and improved agricultural water management. A large aperture scintillometer (LAS) was used to provide these estimates with the objective of quantifying the effects of surface heterogeneity due to soil moisture and vegetation growth variability. The study was conducted over drip-irrigated vineyards located in a semi-arid region in Albacete, Spain during summer 2007. Surface heterogeneity was characterized by integrating eddy covariance (EC) observations of H, LE and ET; land surface temperature (LST) and normalized difference vegetation index (NDVI) data from Landsat …


Assessment Of An Automated Calibration Of The Sebal Algorithm To Estimate Dry-Season Surface-Energy Partitioning In A Forest–Savanna Transition In Brazil, Leonardo Laipelt, Anderson Luis Ruhoff, Ayan Santos Fleischmann, Rafael Henrique Bloedow Kayser, Elisa De Mello Kich, Humberto Ribeiro Da Rocha, Christopher Michael Usher Neale Jan 2020

Assessment Of An Automated Calibration Of The Sebal Algorithm To Estimate Dry-Season Surface-Energy Partitioning In A Forest–Savanna Transition In Brazil, Leonardo Laipelt, Anderson Luis Ruhoff, Ayan Santos Fleischmann, Rafael Henrique Bloedow Kayser, Elisa De Mello Kich, Humberto Ribeiro Da Rocha, Christopher Michael Usher Neale

Daugherty Water for Food Global Institute: Faculty Publications

Evapotranspiration (ET) provides a strong connection between surface energy and hydrological cycles. Advancements in remote sensing techniques have increased our understanding of energy and terrestrial water balances as well as the interaction between surface and atmosphere over large areas. In this study, we computed surface energy fluxes using the Surface Energy Balance Algorithm for Land (SEBAL) algorithm and a simplified adaptation of the CIMEC (Calibration using Inverse Modeling at Extreme Conditions) process for automated endmember selection. Our main purpose was to assess and compare the accuracy of the automated calibration of the SEBAL algorithm using two different sources of meteorological …


Site-Specific Irrigation Management In A Sub-Humid Climate Using A Spatial Evapotranspiration Model With Satellite And Airborne Imagery, Sandeep Bhatti, Derek M. Heeren, J. Burdette Barker, Christopher M. U. Neale, Wayne Woldt, Mitchell S. Maguire, Daran Rudnick Jan 2020

Site-Specific Irrigation Management In A Sub-Humid Climate Using A Spatial Evapotranspiration Model With Satellite And Airborne Imagery, Sandeep Bhatti, Derek M. Heeren, J. Burdette Barker, Christopher M. U. Neale, Wayne Woldt, Mitchell S. Maguire, Daran Rudnick

Department of Biological Systems Engineering: Papers and Publications

Variable Rate Irrigation (VRI) considers spatial variability in soil and plant characteristics to optimize irrigation management in agricultural fields. The advent of unmanned aircraft systems (UAS) creates an opportunity to utilize high-resolution (spatial and temporal) imagery into irrigation management due to decreasing costs, ease of operation, and reduction of regulatory constraints. This research aimed to evaluate the use of UAS data for VRI, and to quantify the potential of VRI in terms of relative crop and water response. Irrigation treatments were: (1) VRI using Landsat imagery (VRI-L), (2) VRI using UAS imagery (VRI-U), (3) uniform (U), and (4) rainfed (R). …


Remote Sensing Of Water Use Efficiency And Terrestrial Drought Recovery Across The Contiguous United States, Behzad Ahmadi, Ali Ahmadalipour, Glenn Tootle Mar 2019

Remote Sensing Of Water Use Efficiency And Terrestrial Drought Recovery Across The Contiguous United States, Behzad Ahmadi, Ali Ahmadalipour, Glenn Tootle

Civil and Environmental Engineering Faculty Publications and Presentations

Ecosystem water-use efficiency (WUE) is defined as the ratio of carbon gain (i.e., gross primary productivity; GPP) to water consumption (i.e., evapotranspiration; ET). WUE is markedly influential on carbon and water cycles, both of which are fundamental for ecosystem state, climate and the environment. Drought can affect WUE, subsequently disturbing the composition and functionality of terrestrial ecosystems. In this study, the impacts of drought on WUE and its components (i.e., GPP and ET) are assessed across the Contiguous US (CONUS) at fine spatial and temporal resolutions. Soil moisture simulations from land surface modeling are utilized to detect and characterize agricultural …


Actual Evapotranspiration And Crop Coefficients Of Irrigated Lowland Rice (Oryza Sativa L.) Under Semiarid Climate, Koffi Djaman, Daran R. Rudnick, Yonnelle D. Moukoumbi, Abdoulaye Sow, Suat Irmak Jan 2019

Actual Evapotranspiration And Crop Coefficients Of Irrigated Lowland Rice (Oryza Sativa L.) Under Semiarid Climate, Koffi Djaman, Daran R. Rudnick, Yonnelle D. Moukoumbi, Abdoulaye Sow, Suat Irmak

Department of Biological Systems Engineering: Papers and Publications

Lowland irrigated rice is the predominant crop produced in the Senegal River Valley characterized by very low annual rainfall, high temperatures, and low relative humidity. The Senegal River is shared by Senegal, Mali, Mauritania, and Guinea, and serves as the main source of irrigation water for the adopted double rice cropping system. Developing appropriate resource management strategies might be the key factor for the sustainability of rice production in the region. This study aims to estimate rice seasonal evapotranspiration (ETa), irrigation water requirement, and to develop rice growth stage specific crop coefficients (Kc) to improve rice water productivity. Field experiments …


Estimating Actual Evapotranspiration From Stony-Soils In Montane Ecosystems, Kshitij Parajuli, Scott B. Jones, David G. Tarboton, Gerald N. Flerchinger, Lawrence E. Hipps, L. Niel Allen, Mark S. Seyfried Nov 2018

Estimating Actual Evapotranspiration From Stony-Soils In Montane Ecosystems, Kshitij Parajuli, Scott B. Jones, David G. Tarboton, Gerald N. Flerchinger, Lawrence E. Hipps, L. Niel Allen, Mark S. Seyfried

Plants, Soils, and Climate Faculty Publications

Quantification of evapotranspiration (ET) is crucial for understanding the water balance and for efficient water resources planning. Agricultural settings have received most attention regarding ET measurements while less knowledge is available for actual ET (ETA) in natural ecosystems, many of which have soils containing significant amounts of stones. This study is focused on modelling ETA from stony soil, particularly in montane ecosystems where we estimate the contribution of stone content on water retention properties in soil. We employed a numerical model (HYDRUS-1D) to simulate ETA in natural settings in northern Utah and southern Idaho during the …


Hydrologic Observation, Model, And Theory Congruence On Evapotranspiration Variance: Diagnosis Of Multiple Observations And Land Surface Models, Ruijie Zeng, Ximing Cai Oct 2018

Hydrologic Observation, Model, And Theory Congruence On Evapotranspiration Variance: Diagnosis Of Multiple Observations And Land Surface Models, Ruijie Zeng, Ximing Cai

Civil and Environmental Engineering Faculty Publications

This paper reconciles the state-of-the-art observations and simulations of evapotranspiration (ET) temporal variability through a diagnostic framework composed of an observation-model-theory triplet. Specifically, a confirmed theoretical tool, Evapotranspiration Temporal VARiance Decomposition (EVARD), is used as a benchmark to estimate ET monthly variance (σ2ET) across the contiguous United States (CONUS) with inputs including hydroclimatic observations, Gravity Recovery and Climate Experiment-based terrestrial water storage, four observation-based products (ETRSUW by the University of Washington, ETRSMOD16 from MOD16 Global Terrestrial ET Data Set, ETFLUXNET upscaled from of fluxtower observations, and ETGLEAM from Global Land Evaporation Amsterdam Model), …


Evaluation Of Tseb Turbulent Fluxes Using Different Methods For The Retrieval Of Soil And Canopy Component Temperatures From Uav Thermal And Multispectral Imagery, Héctor Nieto, William P. Kustas, Alfonso F. Torres-Rúa, Joseph G. Alfieri, Feng Gao, Martha C. Anderson, W. Alex White, Lisheng Song, María Del Mar Alsina, John H. Prueger, Mac Mckee, Manal Elarab, Lynn G. Mckee Sep 2018

Evaluation Of Tseb Turbulent Fluxes Using Different Methods For The Retrieval Of Soil And Canopy Component Temperatures From Uav Thermal And Multispectral Imagery, Héctor Nieto, William P. Kustas, Alfonso F. Torres-Rúa, Joseph G. Alfieri, Feng Gao, Martha C. Anderson, W. Alex White, Lisheng Song, María Del Mar Alsina, John H. Prueger, Mac Mckee, Manal Elarab, Lynn G. Mckee

AggieAir Publications

The thermal-based Two-Source Energy Balance (TSEB) model partitions the evapotranspiration (ET) and energy fluxes from vegetation and soil components providing the capability for estimating soil evaporation (E) and canopy transpiration (T). However, it is crucial for ET partitioning to retrieve reliable estimates of canopy and soil temperatures and net radiation, as the latter determines the available energy for water and heat exchange from soil and canopy sources. These two factors become especially relevant in row crops with wide spacing and strongly clumped vegetation such as vineyards and orchards. To better understand these effects, very high spatial resolution remote-sensing data from …


Integration Of Remote Sensing And Proximal Sensing For Improvement Of Field Scale Water Management, Foad Foolad Jun 2018

Integration Of Remote Sensing And Proximal Sensing For Improvement Of Field Scale Water Management, Foad Foolad

Department of Civil and Environmental Engineering: Dissertations, Theses, and Student Research

Water is one of the most precious natural resources, and sustainable water resources development ‎‎is a significant challenge facing water managers over the coming decades. Accurate estimation of ‎‎the different components of the hydrologic cycle is key for water managers and planners in order ‎‎to achieve sustainable water resources development. The primary goal of this dissertation was to ‎investigate techniques to combine datasets acquired by remote and proximal sensing and in-situ ‎sensors for the improvement of monitoring near surface water fluxes. This dissertation is ‎separated into three site-specific case studies. First study, investigated the feasibility of using ‎inverse vadose zone …


Evaluation Of A Hybrid Reflectance-Based Crop Coefficient And Energy Balance Evapotranspiration Model For Irrigation Management, J. Burdette Barker, Christopher M. U. Neale, Derek M. Heeren, Andrew E. Suyker Apr 2018

Evaluation Of A Hybrid Reflectance-Based Crop Coefficient And Energy Balance Evapotranspiration Model For Irrigation Management, J. Burdette Barker, Christopher M. U. Neale, Derek M. Heeren, Andrew E. Suyker

Department of Biological Systems Engineering: Papers and Publications

Accurate generation of spatial soil water maps is useful for many types of irrigation management. A hybrid remote sensing evapotranspiration (ET) model combining reflectance-based basal crop coefficients (Kcbrf) and a two-source energy balance (TSEB) model was modified and validated for use in real-time irrigation management. We modeled spatial ET for maize and soybean fields in eastern Nebraska for the 2011-2013 growing seasons. We used Landsat 5, 7, and 8 imagery as remote sensing inputs. In the TSEB, we used the Priestly-Taylor (PT) approximation for canopy latent heat flux, as in the original model formulations. We also used the …


Evaluation Of Variable Rate Irrigation Using A Remote-Sensing-Based Model, John Burdette Barker, Derek M. Heeren, Christopher M.U. Neale, Daran Rudnick Jan 2018

Evaluation Of Variable Rate Irrigation Using A Remote-Sensing-Based Model, John Burdette Barker, Derek M. Heeren, Christopher M.U. Neale, Daran Rudnick

Department of Biological Systems Engineering: Papers and Publications

Improvements in soil water balance modeling can be beneficial for optimizing irrigation management to account for spatial variability in soil properties and evapotranspiration (ET). A remote-sensing-based ET and water balance model was tested for irrigation management in an experiment at two University of Nebraska-Lincoln research sites located near Mead and Brule, Nebraska. Both fields included a center pivot equipped with variable rate irrigation (VRI). The study included maize in 2015 and 2016 and soybean in 2016 at Mead, and maize in 2016 at Brule, for a total of 210 plot-years. Four irrigation treatments were applied at Mead, including: VRI based …


Crop Evapotranspiration, Irrigationwater Requirement And Water Productivity Of Maize From Meteorological Data Under Semiarid Climate, Koffi Djaman, Michael O'Neill, Curtis K. Owen, Daniel Smeal, Komlan Koudahe, Margaret West, Samuel Allen, Kevin Lombard, Suat Irmak Jan 2018

Crop Evapotranspiration, Irrigationwater Requirement And Water Productivity Of Maize From Meteorological Data Under Semiarid Climate, Koffi Djaman, Michael O'Neill, Curtis K. Owen, Daniel Smeal, Komlan Koudahe, Margaret West, Samuel Allen, Kevin Lombard, Suat Irmak

Department of Biological Systems Engineering: Papers and Publications

Under the semiarid climate of the Southwest United States, accurate estimation of crop water use is important for water management and planning under conservation agriculture. The objectives of this study were to estimate maize water use and water productivity in the Four Corners region of New Mexico. Maize was grown under full irrigation during the 2011, 2012, 2013, 2014 and 2017 seasons at the Agricultural Science Center at Farmington (NM). Seasonal amounts of applied irrigation varied from 576.6 to 1051.6 mm and averaged 837.7 mm and the total water supply varied from 693.4 to 1140.5 mm. Maize actual evapotranspiration was …


Mapping Annual Riparian Water Use Based On The Single-Satellite-Scene Approach, Kul Khand, Saleh Taghvaeian, Leila Hassan-Esfahani Aug 2017

Mapping Annual Riparian Water Use Based On The Single-Satellite-Scene Approach, Kul Khand, Saleh Taghvaeian, Leila Hassan-Esfahani

Civil and Environmental Engineering Faculty Publications

The accurate estimation of water use by groundwater-dependent riparian vegetation is of great importance to sustainable water resource management in arid/semi-arid regions. Remote sensing methods can be effective in this regard, as they capture the inherent spatial variability in riparian ecosystems. The single-satellite-scene (SSS) method uses a derivation of the Normalized Difference Vegetation Index (NDVI) from a single space-borne image during the peak growing season and minimal ground-based meteorological data to estimate the annual riparian water use on a distributed basis. This method was applied to a riparian ecosystem dominated by tamarisk along a section of the lower Colorado River …


Bias And Other Error In Gridded Weather Data Sets And Their Impacts On Estimating Reference Evapotranspiration, Philip A. Blankenau May 2017

Bias And Other Error In Gridded Weather Data Sets And Their Impacts On Estimating Reference Evapotranspiration, Philip A. Blankenau

Department of Civil and Environmental Engineering: Dissertations, Theses, and Student Research

Gridded weather data sets are increasingly used in a variety of hydrologic and agricultural applications due to their complete spatial and temporal coverage. One application of gridded data sets is the estimation of evapotranspiration (ET). Several operational remote sensing (RS) approaches for estimating ET, such as the SEBAL, METRIC and EEFlux models, require estimates of reference ET (ETref), where ETref is expected ET from a hypothetical reference crop of clipped grass or alfalfa. Gridded weather data provide for the computation of ETref in all areas of a remote sensing image, and therefore potentially remove the need for dense weather station …


Trend Analysis In Rainfall, Reference Evapotranspiration And Aridity Index In Southern Senegal: Adaptation To The Vulnerability Of Rainfed Rice Cultivation To Climate Change, Komlan Koudahe, Koffi Djaman, Ansoumana Bodian, Suat Irkmak, Mamadou Sall, Lamine Diop, Alpha B. Balde, Daran Rudnick Jan 2017

Trend Analysis In Rainfall, Reference Evapotranspiration And Aridity Index In Southern Senegal: Adaptation To The Vulnerability Of Rainfed Rice Cultivation To Climate Change, Komlan Koudahe, Koffi Djaman, Ansoumana Bodian, Suat Irkmak, Mamadou Sall, Lamine Diop, Alpha B. Balde, Daran Rudnick

Department of Biological Systems Engineering: Papers and Publications

Rainfall and evapotranspiration are two vital elements for food production under rainfed agriculture. This study aims at investigating the combined changes in these variables in the form of aridly index in the southern Senegal. The temporal trends in annual and monthly (from May to October) aridity index, rainfall and evapotranspiration are examined and adaptation strategies to the vulnerability of rainfed rice cultivation to the changes are developed. The results show a significant decreasing trend in annual rainfall at all study locations for the period 1922-2015. When analyzing the trends in sub-periods, there are two clear patterns in the annual rainfall …


Spatial And Temporal Changes In Maize And Soybean Grain Yield, Precipitation Use Efficiency, And Crop Water Productivity In The U.S. Great Plains, Meetpal S. Kukal, S. Irmak Jan 2017

Spatial And Temporal Changes In Maize And Soybean Grain Yield, Precipitation Use Efficiency, And Crop Water Productivity In The U.S. Great Plains, Meetpal S. Kukal, S. Irmak

Department of Biological Systems Engineering: Papers and Publications

Sustainable agricultural utilization of the limited water resources demands improvements in understanding the changes in crop water productivity (CWP) in space and time, which is often presented as a potential solution to relieve the growing pressure on fresh water resources. In addition, crop yield needs to be studied in relation to precipitation received annually and during the growing season for its contribution to reduce irrigation water requirements, which is quantified through precipitation use efficiency (PUE). Hence, systematic quantifications, mapping, and analyses of large-scale CWP and PUE levels are needed. This study aims to quantify long-term (1982-2013) information on grain yield, …


Development And Assessment Of A Groundwater Sustainability Index In Climatically Diverse Groundwater Irrigated Regions In Nebraska, Maria A. Mulet Jalil Jul 2016

Development And Assessment Of A Groundwater Sustainability Index In Climatically Diverse Groundwater Irrigated Regions In Nebraska, Maria A. Mulet Jalil

Department of Biological Systems Engineering: Dissertations and Theses

The aim of this research was to evaluate the impact of regional change in ET on groundwater level changes and the assessment and development of a groundwater sustainability index for climatically diverse regions across Nebraska during 2000-2014. Irrigation in the selected regions is predominantly supplied by groundwater. The hypothesis is that groundwater use can become sustainable if the regional evapotranspiration (ET) is managed so that it equals the ET of vegetation that is native to the region. Site locations were Box Butte, Chase, Dundy, Holt LNNRD and York Counties and 3 ecosystems were evaluated: native vegetation, dryland and irrigated cropping …


Estimation Of Surface Soil Moisture In Irrigated Lands By Assimilation Of Landsat Vegetation Indices, Surface Energy Balance Products, And Relevance Vector Machines, Alfonso F. Torres-Rua, Andres M. Ticlavilca, Roula Bachour, Mac Mckee Apr 2016

Estimation Of Surface Soil Moisture In Irrigated Lands By Assimilation Of Landsat Vegetation Indices, Surface Energy Balance Products, And Relevance Vector Machines, Alfonso F. Torres-Rua, Andres M. Ticlavilca, Roula Bachour, Mac Mckee

Civil and Environmental Engineering Faculty Publications

Spatial surface soil moisture can be an important indicator of crop conditions on farmland, but its continuous estimation remains challenging due to coarse spatial and temporal resolution of existing remotely-sensed products. Furthermore, while preceding research on soil moisture using remote sensing (surface energy balance, weather parameters, and vegetation indices) has demonstrated a relationship between these factors and soil moisture, practical continuous spatial quantification of the latter is still unavailable for use in water and agricultural management. In this study, a methodology is presented to estimate volumetric surface soil moisture by statistical selection from potential predictors that include vegetation indices and …