Open Access. Powered by Scholars. Published by Universities.®

Civil and Environmental Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Civil and Environmental Engineering Faculty Research and Publications

Biochar

Articles 1 - 4 of 4

Full-Text Articles in Civil and Environmental Engineering

The State Of Technologies And Research For Energy Recovery From Municipal Wastewater Sludge And Biosolids, Zhongzhe Liu, Brooke Mayer, Kaushik Venkiteshwaran, Saba Seyedi, Arun S.K. Raju, Daniel Zitomer, Patrick J. Mcnamara Apr 2020

The State Of Technologies And Research For Energy Recovery From Municipal Wastewater Sludge And Biosolids, Zhongzhe Liu, Brooke Mayer, Kaushik Venkiteshwaran, Saba Seyedi, Arun S.K. Raju, Daniel Zitomer, Patrick J. Mcnamara

Civil and Environmental Engineering Faculty Research and Publications

Wastewater resource recovery facilities produce wastewater solids that offer potential for energy recovery. This opinion article provides a perspective on state-of-the-art technologies to recover energy from sludge (unstabilized wastewater residual solids) and biosolids (stabilized wastewater solids meeting criteria for application on land). The production of biodiesel fuel is an emerging technology for energy recovery from sludge, whereas advancements in pretreatment technologies have improved energy recovery from anaerobic digestion of sludge. Incineration is an established technology to recover energy from sludge or biosolids. Gasification, and to a greater extent, pyrolysis are emerging technologies well-suited for energy recovery from biosolids. While gasification …


Pyrolysis Of Wastewater Biosolids Significantly Reduces Estrogenicity, T. C. Hoffman, Daniel Zitomer, Patrick J. Mcnamara Nov 2016

Pyrolysis Of Wastewater Biosolids Significantly Reduces Estrogenicity, T. C. Hoffman, Daniel Zitomer, Patrick J. Mcnamara

Civil and Environmental Engineering Faculty Research and Publications

Most wastewater treatment processes are not specifically designed to remove micropollutants. Many micropollutants are hydrophobic so they remain in the biosolids and are discharged to the environment through land-application of biosolids. Micropollutants encompass a broad range of organic chemicals, including estrogenic compounds (natural and synthetic) that reside in the environment, a.k.a. environmental estrogens. Public concern over land application of biosolids stemming from the occurrence of micropollutants hampers the value of biosolids which are important to wastewater treatment plants as a valuable by-product. This research evaluated pyrolysis, the partial decomposition of organic material in an oxygen-deprived system under high temperatures, as …


Pyrolysis Of Dried Wastewater Biosolids Can Be Energy Positive, Patrick J. Mcnamara, Jon Koch, Zhongzhe Liu, Daniel Zitomer Sep 2016

Pyrolysis Of Dried Wastewater Biosolids Can Be Energy Positive, Patrick J. Mcnamara, Jon Koch, Zhongzhe Liu, Daniel Zitomer

Civil and Environmental Engineering Faculty Research and Publications

Pyrolysis is a thermal process that converts biosolids into biochar (a soil amendment), py-oil and py-gas, which can be energy sources. The objectives of this research were to determine the product yield of dried biosolids during pyrolysis and the energy requirements of pyrolysis. Bench-scale experiments revealed that temperature increases up to 500 °C substantially decreased the fraction of biochar and increased the fraction of py-oil. Py-gas yield increased above 500 °C. The energy required for pyrolysis was approximately 5-fold less than the energy required to dry biosolids (depending on biosolids moisture content), indicating that, if a utility already uses energy …


Biochar From Pyrolysis Of Biosolids For Nutrient Adsorption And Turfgrass Cultivation, Daniel Elliott Carey, Patrick J. Mcnamara, Daniel Zitomer Dec 2015

Biochar From Pyrolysis Of Biosolids For Nutrient Adsorption And Turfgrass Cultivation, Daniel Elliott Carey, Patrick J. Mcnamara, Daniel Zitomer

Civil and Environmental Engineering Faculty Research and Publications

At water resource recovery facilities, nutrient removal is often required and energy recovery is an ever-increasing goal. Pyrolysis may be a sustainable process for handling wastewater biosolids because energy can be recovered in the py-gas and py-oil. Additionally, the biochar produced has value as a soil conditioner. The objective of this work was to determine if biochar could be used to adsorb ammonia from biosolids filtrate and subsequently be applied as a soil conditioner to improve grass growth. The maximum carrying capacity of base modified biochar for NH3−N was 5.3 mg/g. Biochar containing adsorbed ammonium and potassium was …