Open Access. Powered by Scholars. Published by Universities.®

Civil and Environmental Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Civil and Environmental Engineering

Identifying Payable Cluster Distributions For Improved Reservoir Characterization: A Robust Unsupervised Ml Strategy For Rock Typing Of Depositional Facies In Heterogeneous Rocks, Umar Ashraf, Aqsa Anees, Hucai Zhang, Muhammad Ali, Hung Vo Thanh, Yujie Yuan Dec 2024

Identifying Payable Cluster Distributions For Improved Reservoir Characterization: A Robust Unsupervised Ml Strategy For Rock Typing Of Depositional Facies In Heterogeneous Rocks, Umar Ashraf, Aqsa Anees, Hucai Zhang, Muhammad Ali, Hung Vo Thanh, Yujie Yuan

Research outputs 2022 to 2026

The oil and gas industry relies on accurately predicting profitable clusters in subsurface formations for geophysical reservoir analysis. It is challenging to predict payable clusters in complicated geological settings like the Lower Indus Basin, Pakistan. In complex, high-dimensional heterogeneous geological settings, traditional statistical methods seldom provide correct results. Therefore, this paper introduces a robust unsupervised AI strategy designed to identify and classify profitable zones using self-organizing maps (SOM) and K-means clustering techniques. Results of SOM and K-means clustering provided the reservoir potentials of six depositional facies types (MBSD, DCSD, MBSMD, SSiCL, SMDFM, MBSh) based on cluster distributions. The depositional facies …


Stress-Dependent Mohr–Coulomb Shear Strength Parameters For Intact Rock, Hao Li, Leo Pel, Zhenjiang You, David Smeulders Dec 2024

Stress-Dependent Mohr–Coulomb Shear Strength Parameters For Intact Rock, Hao Li, Leo Pel, Zhenjiang You, David Smeulders

Research outputs 2022 to 2026

Rock strength is imperative for the design and stability analysis of engineering structures. The Mohr–Coulomb (M-C) criterion holds significant prominence in geotechnical engineering. However, the M-C criterion fails to accurately capture the nonlinear strength response and neglects the critical state of rocks, potentially leading to inaccuracies in the design phase of deep engineering projects. This study introduces an innovative stress-dependent friction angle and cohesion (SFC) for the M-C criterion to capture the nonlinear strength responses of intact rocks, spanning from non-critical to critical states (brittle to ductile regions). A novel method for determining these stress-dependent parameters at each corresponding σ3 …


Rock Structural Changes Monitored By Fibre Bragg Grating Sensors And Nuclear Magnetic Resonance During Static And Dynamic Carbonated Brine Core Flooding Experiments, Bruno Da Silva Falcão, Lionel Esteban, Ausama Giwelli, Ahmed Al-Yaseri, Alireza Keshavarz, Jeremie Dautriat, Stephanie Vialle, Stefan Iglauer Jul 2024

Rock Structural Changes Monitored By Fibre Bragg Grating Sensors And Nuclear Magnetic Resonance During Static And Dynamic Carbonated Brine Core Flooding Experiments, Bruno Da Silva Falcão, Lionel Esteban, Ausama Giwelli, Ahmed Al-Yaseri, Alireza Keshavarz, Jeremie Dautriat, Stephanie Vialle, Stefan Iglauer

Research outputs 2022 to 2026

One proposed solution to reduce greenhouse gas emissions is the capture and storage of carbon dioxide (CCS) in geological formations such as depleted oil and gas reservoirs. Injected carbon dioxide (CO2) forms carbonic acid once dissolved in the formation water, which can lead to dissolution of certain types of rock minerals. This may weaken rock geomechanical properties that can jeopardize the safety of long-term storage. In this work, the use of Fibre Bragg Grating (FBG) sensors associated with Nuclear Magnetic Resonance (NMR) was investigated to measure the change in rock strain during core flooding experiments. Optical fibres were glued onto …


Advance On Rock-Breaking Cutter Steels: A Review Of Characteristics, Failure Modes, Molding Processes And Strengthening Technology, Ying Jiang, Bai Xin Dong, Jun Fan, Feng Qiu, Hong Yu Yang, Shi Li Shu, Fang Chang, Qi Chuan Jiang, Lai Chang Zhang Jul 2024

Advance On Rock-Breaking Cutter Steels: A Review Of Characteristics, Failure Modes, Molding Processes And Strengthening Technology, Ying Jiang, Bai Xin Dong, Jun Fan, Feng Qiu, Hong Yu Yang, Shi Li Shu, Fang Chang, Qi Chuan Jiang, Lai Chang Zhang

Research outputs 2022 to 2026

Rock breaking has always been a challenging problem that must be solved in projects such as excavating mountains, drilling wells, and constructing railways. Among the rock-breaking cutter steels, AISI H13 steel and wear-resistant high manganese steel have become the best choices. From the characteristics and failure modes of the two, rock-breaking cutter steels should simultaneously have high strength, high toughness and high wear resistance to avoid short-term fracture/damage and cost increase. Analyzing the problems existing in the molding process of rock-breaking cutter steels such as die casting, forging, and hot stamping, traditional strengthening technologies such as alloying optimization, heat treatment, …


The Effect Of Methylene Blue On Stearic Acid-Aged Quartz/Co2/Brine Wettability: Implications For Co2 Geo-Storage, Fatemah Alhammad, Mujahid Ali, Nurudeen P. Yekeen, Muhammad Ali, Hussein Hoteit, Stefan Iglauer, Alireza Keshavarz May 2024

The Effect Of Methylene Blue On Stearic Acid-Aged Quartz/Co2/Brine Wettability: Implications For Co2 Geo-Storage, Fatemah Alhammad, Mujahid Ali, Nurudeen P. Yekeen, Muhammad Ali, Hussein Hoteit, Stefan Iglauer, Alireza Keshavarz

Research outputs 2022 to 2026

Carbon dioxide sequestration in geological formations has been proposed as a promising solution to reach net zero carbon emissions but the success of underground CO2 storage in sandstone formations depends on the brine/CO2 wettability of sandstone. Research evidence showed that natural geological formation is hydrophobic even in the presence of minute concentration of inherent organic acids. This study investigates the effect of methylene blue (MB) on CO2 wettability of organic-acid contaminated quartz through the tilted plate contact angle measurement method. Pure quartz substrates were aged in a stearic acid/n-decane solution for one week and subsequently modified with different concentrations of …


Enhanced Hoek-Brown (H-B) Criterion For Rocks Exposed To Chemical Corrosion, Hao Li, Leo Pel, Zhenjiang You, David Smeulders May 2024

Enhanced Hoek-Brown (H-B) Criterion For Rocks Exposed To Chemical Corrosion, Hao Li, Leo Pel, Zhenjiang You, David Smeulders

Research outputs 2022 to 2026

Underground constructions often encounter water environments, where water–rock interaction can increase porosity, thereby weakening engineering rocks. Correspondingly, the failure criterion for chemically corroded rocks becomes essential in the stability analysis and design of such structures. This study enhances the applicability of the Hoek-Brown (H-B) criterion for engineering structures operating in chemically corrosive conditions by introducing a kinetic porosity-dependent instantaneous mi (KPIM). A multiscale experimental investigation, including nuclear magnetic resonance (NMR), X-ray diffraction (XRD), scanning electron microscopy (SEM), pH and ion chromatography analysis, and triaxial compression tests, is employed to quantify pore structural changes and their linkage with the strength responses …


Measurements Of The Effective Stress Coefficient For Elastic Moduli Of Sandstone In Quasi-Static Regime Using Semiconductor Strain Gauges, Vassily Mikhaltsevitch, Maxim Lebedev Feb 2024

Measurements Of The Effective Stress Coefficient For Elastic Moduli Of Sandstone In Quasi-Static Regime Using Semiconductor Strain Gauges, Vassily Mikhaltsevitch, Maxim Lebedev

Research outputs 2022 to 2026

Numerous experimental and theoretical studies undertaken to determine the effective stress coefficient for seismic velocities in rocks stem from the importance of this geomechanical parameter both for monitoring changes in rock saturation and pore pressure distribution in connection with reservoir production, and for overpressure prediction in reservoirs and formations from seismic data. The present work pursues a task to determine, in the framework of a low-frequency laboratory study, the dependence of the elastic moduli of n-decane-saturated sandstone on the relationship between pore and confining pressures. The study was conducted on a sandstone sample with high quartz and notable clay content …


Enhancing Wettability Prediction In The Presence Of Organics For Hydrogen Geo-Storage Through Data-Driven Machine Learning Modeling Of Rock/H2/Brine Systems, Zeeshan Tariq, Muhammad Ali, Nurudeen Yekeen, Auby Baban, Bicheng Yan, Shuyu Sun, Hussein Hoteit Dec 2023

Enhancing Wettability Prediction In The Presence Of Organics For Hydrogen Geo-Storage Through Data-Driven Machine Learning Modeling Of Rock/H2/Brine Systems, Zeeshan Tariq, Muhammad Ali, Nurudeen Yekeen, Auby Baban, Bicheng Yan, Shuyu Sun, Hussein Hoteit

Research outputs 2022 to 2026

The success of geological H2 storage relies significantly on rock–H2–brine interactions and wettability. Experimentally assessing the H2 wettability of storage/caprocks as a function of thermos-physical conditions is arduous because of high H2 reactivity and embrittlement damages. Data-driven machine learning (ML) modeling predictions of rock–H2–brine wettability are less strenuous and more precise. They can be conducted at geo-storage conditions that are impossible or hazardous to attain in the laboratory. Thus, ML models were utilized in this research to accurately model the wettability behavior of a ternary system consisting of H2, rock minerals (quartz and mica), and brine at different operating geological …


A New Approach To Predicting Vertical Permeability For Carbonate Rocks In The Southern Mesopotamian Basin, Emad A. Al-Khdheeawi, Raed H. Allawi, Wisam I. Al-Rubaye, Stefan Iglauer Dec 2023

A New Approach To Predicting Vertical Permeability For Carbonate Rocks In The Southern Mesopotamian Basin, Emad A. Al-Khdheeawi, Raed H. Allawi, Wisam I. Al-Rubaye, Stefan Iglauer

Research outputs 2022 to 2026

Reservoir performance depends on many factors, and the most important one is permeability anisotropy. In addition, with high heterogeneity, it is essential to find unique relationships to predict permeability. Therefore, this study aims to predict vertical permeability based on horizontal permeability and porosity and to find new equations for carbonate reservoirs. This work relied on the 398 measured points of cores data collected from several wells in carbonate reservoirs. A new correlation for predicting vertical permeability for the whole data (369 samples) as a function of horizontal permeability and porosity has been developed. The results indicate that this new correlation …


Residual Trapping Of Co2, N2, And A Co2-N2 Mixture In Indiana Limestone Using Robust Nmr Coreflooding: Implications For Co2 Geological Storage, Amer Alanazi, Auby Baban, Muhammad Ali, Alireza Keshavarz, Stefan Iglauer, Hussein Hoteit Dec 2023

Residual Trapping Of Co2, N2, And A Co2-N2 Mixture In Indiana Limestone Using Robust Nmr Coreflooding: Implications For Co2 Geological Storage, Amer Alanazi, Auby Baban, Muhammad Ali, Alireza Keshavarz, Stefan Iglauer, Hussein Hoteit

Research outputs 2022 to 2026

Carbon capture and sequestration (CCS) in geological formations is a prominent solution for reducing anthropogenic carbon emissions and mitigating climate change. The capillary trapping of CO2 is a primary trapping mechanism governed by the pressure difference between the wetting and nonwetting phases in a porous rock, making the latter a key input parameter for dynamic simulation models. During the CCS operational process, however, the CO2 is prone to contamination by impurities from various sources such as surfaces (e.g., pipelines and tanks) and the subsurface (e.g., existing natural gas). Such contamination can strongly influence the overall CO2 wettability, storage capacity, and …


Effect Of Methylene Blue On Wetting Characteristics Of Quartz/H2/Brine Systems: Implication For Hydrogen Geological Storage, Fatemah Alhamad, Mujahid Ali, Nurudeen P. Yekeen, Muhammad Ali, Hussein Hoteit, Stefan Iglauer, Alireza Keshavarz Nov 2023

Effect Of Methylene Blue On Wetting Characteristics Of Quartz/H2/Brine Systems: Implication For Hydrogen Geological Storage, Fatemah Alhamad, Mujahid Ali, Nurudeen P. Yekeen, Muhammad Ali, Hussein Hoteit, Stefan Iglauer, Alireza Keshavarz

Research outputs 2022 to 2026

Hydrogen (H2) is considered a promising replacement for fossil fuels due to its enormous potential as an environmentally friendly and sustainable option compared to carbon-based fossil fuels. However, storing the vast quantity of H2 required to satisfy the global energy demand on the earth's surface can be difficult due to its compressibility and volatility. The best option for large-scale storage is underground H2 storage (UHS), which can be retrieved when needed. Rock wettability is vital in UHS because it determines the H2 storage capacity, containment security, and potential withdrawal and injection rates. Organic acid inherent in storage formations could make …


Enhancing The Co2 Trapping Capacity Of Saudi Arabian Basalt Via Nanofluid Treatment: Implications For Co2 Geo-Storage, Muhammad Ali, Nurudeen Yekeen, Mirhasan Hosseini, Ghazanfer R. Abbasi, Amer Alanazi, Alireza Keshavarz, Thomas Finkbeiner, Hussein Hoteit Sep 2023

Enhancing The Co2 Trapping Capacity Of Saudi Arabian Basalt Via Nanofluid Treatment: Implications For Co2 Geo-Storage, Muhammad Ali, Nurudeen Yekeen, Mirhasan Hosseini, Ghazanfer R. Abbasi, Amer Alanazi, Alireza Keshavarz, Thomas Finkbeiner, Hussein Hoteit

Research outputs 2022 to 2026

Mineralization reactions in basaltic formations have gained recent interest as an effective method for CO2 geo-storage in order to mitigate anthropogenic greenhouse gas emissions. The CO2/rock interactions, including interfacial tension and wettability, are crucial factors in determining the CO2 trapping capacity and the feasibility of CO2 geological storage in these formations. The Red Sea geological coast in Saudi Arabia has many basaltic formations, and their wetting characteristics are rarely reported in the literature. Moreover, organic acid contamination is inherent in geo-storage formations and significantly impacts their CO2 geo-storage capacities. Hence, to reverse the organic effect, the influence of various SiO2 …


Predicting And Validating The Load-Settlement Behavior Of Large-Scale Geosynthetic-Reinforced Soil Abutments Using Hybrid Intelligent Modeling, Muhammad Nouman Amjad Raja, Syed Taseer Abbas Jaffar, Abidhan Bardhan, Sanjay Kumar Shukla Mar 2023

Predicting And Validating The Load-Settlement Behavior Of Large-Scale Geosynthetic-Reinforced Soil Abutments Using Hybrid Intelligent Modeling, Muhammad Nouman Amjad Raja, Syed Taseer Abbas Jaffar, Abidhan Bardhan, Sanjay Kumar Shukla

Research outputs 2022 to 2026

Settlement prediction of geosynthetic-reinforced soil (GRS) abutments under service loading conditions is an arduous and challenging task for practicing geotechnical/civil engineers. Hence, in this paper, a novel hybrid artificial intelligence (AI)-based model was developed by the combination of artificial neural network (ANN) and Harris hawks’ optimisation (HHO), that is, ANN-HHO, to predict the settlement of the GRS abutments. Five other robust intelligent models such as support vector regression (SVR), Gaussian process regression (GPR), relevance vector machine (RVM), sequential minimal optimisation regression (SMOR), and least-median square regression (LMSR) were constructed and compared to the ANN-HHO model. The predictive strength, relalibility and …


Editorial: Rock Physics Modeling And Well-Log Practice For Unconventional Reservoirs, Qiaomu Qi, Lidong Dai, Maxim Lebedev, Tobias Müller, Junfang Zhang Jan 2023

Editorial: Rock Physics Modeling And Well-Log Practice For Unconventional Reservoirs, Qiaomu Qi, Lidong Dai, Maxim Lebedev, Tobias Müller, Junfang Zhang

Research outputs 2022 to 2026

Unconventional resources with commercial interest in the world mainly include heavy oils, shales, coalbed methane and tight gas sands. The production and development of these resources have changed the supply pattern of global energy. Quantitative interpretation of geophysical data in the exploration, well logging and engineering development of the unconventional resources requires a comprehensive understanding of the physical properties of rocks and their relationships. The research of rock physics provides an interdisciplinary treatment of physical properties, whether it is highly related to geological, geophysical and geomechanical methodologies. The development of new rock physics methods is essential when integrating core, well-log, …


A New Volumetric Strain-Based Method For Determining The Crack Initiation Threshold Of Rocks Under Compression, Hao Li, Ruizhi Zhong, Leo Pel, David Smeulders, Zhenjiang You Jan 2023

A New Volumetric Strain-Based Method For Determining The Crack Initiation Threshold Of Rocks Under Compression, Hao Li, Ruizhi Zhong, Leo Pel, David Smeulders, Zhenjiang You

Research outputs 2022 to 2026

The crack initiation stress threshold ( ci) is an essential parameter in the brittle failure process of rocks. In this paper, a volumetric strain response method (VSRM) is proposed to determine the σci based on two new concepts, i.e., the dilatancy resistance state index ( ci) and the maximum value of the dilatancy resistance state index difference (| ci|), which represent the state of dilatancy resistance of the rock and the shear sliding resistance capacity of the crack-like pores during the compressive period, respectively. The deviatoric stress corresponding to the maximum | ci| is taken as the ci . We …


Effect Of Biochar On Desiccation Of Marine Soils Under Constant And Cyclic Temperatures, Thellen Kumar Puspanathan, Vihan Shenal Jayawardane, Suvash Chandra Paul, Kong Sih Ying, Sanjay Kumar Shukla, Vivi Anggraini Jun 2022

Effect Of Biochar On Desiccation Of Marine Soils Under Constant And Cyclic Temperatures, Thellen Kumar Puspanathan, Vihan Shenal Jayawardane, Suvash Chandra Paul, Kong Sih Ying, Sanjay Kumar Shukla, Vivi Anggraini

Research outputs 2022 to 2026

Biochar has recently been gaining increasing attention as a stable and sustainable soil amendment material. However, the effect of biochar amendment on the desiccation behaviour of coastal soils has not yet been examined. Consequently, the present study primarily investigated the effect of exposing biochar-amended marine soil (BAS) to constant and cyclic temperatures on its swell–shrink, evaporation and desiccation cracking characteristics. Biochar contents of 1%, 2%, 4% and particle size ranges of PS-1 (600 μm < D ≤ 2000 μm), PS-2 (300 μm < D ≤ 600 μm), PS-3 (D ≤ 75 μm) (D: biochar particle diameter) were employed. It was revealed that the absolute volumetric shrinkage of both unamended and biochar-amended specimens increased as the number of thermal cycles increased. Under continuous heat exposure, 4% (PS-3) BAS in compacted state achieved the maximum reduction in volumetric shrinkage which was 42%. Moreover, under continuous heat exposure, 2% (PS-1) BAS in slurry state achieved the highest reduction in desiccation cracking, which was 73%. The present study highlights the importance of identifying the most effective combination of biochar content and particle size required to achieve a desired outcome, in order to gain the maximum benefit of biochar as an amendment material at the lowest possible cost.