Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Chemical Engineering

Influence Of Interfering Ions And Adsorption Temperature On Radioactive Iodine Removal Efficiency And Stability Of Ni-Mof-74 And Zr-Uio-66, Turki Alghamdi, Peter O. Aina, Ali A. Rownaghi, Fateme Rezaei Jan 2023

Influence Of Interfering Ions And Adsorption Temperature On Radioactive Iodine Removal Efficiency And Stability Of Ni-Mof-74 And Zr-Uio-66, Turki Alghamdi, Peter O. Aina, Ali A. Rownaghi, Fateme Rezaei

Chemical and Biochemical Engineering Faculty Research & Creative Works

Metal-organic frameworks (MOFs) often exhibit an exceptional adsorption-based separation performance for a variety of gases, ions, and liquids. While most radioactive iodine removal studies focus on the capture of radioactive iodine from off-gas streams, few studies have systematically investigated the effect of structure-property relationships of MOFs on iodine removal performance in the presence of interfering ions in liquid solutions. Herein, we investigated the iodide ion (I-) adsorption performance of two model MOFs (e.g., Ni-MOF-74 and Zr-UiO-66) in liquid phase as a function of iodine concentration (e.g., 0.125 to 0.25 and 0.50 mmol/L) and adsorption temperature (e.g., 25 to …


Atomic Layer Deposited Pt/Tio2-Sio2 And Pt/Zro2-Sio2 For Sequential Adsorption And Oxidation Of Vocs, Busuyi O. Adebayo, Han Yu, Ali A. Rownaghi, Xinhua Liang, Fateme Rezaei Sep 2022

Atomic Layer Deposited Pt/Tio2-Sio2 And Pt/Zro2-Sio2 For Sequential Adsorption And Oxidation Of Vocs, Busuyi O. Adebayo, Han Yu, Ali A. Rownaghi, Xinhua Liang, Fateme Rezaei

Chemical and Biochemical Engineering Faculty Research & Creative Works

In this work, Pt nanoparticles were loaded on SiO2, TiO2-thin-film-modified SiO2 (TiO2-SiO2), or ZrO2-thin-film-modified SiO2 (ZrO2-SiO2) particles and the composites were investigated for sequential adsorption and desorption/catalytic oxidation of benzene. The SiO2 was prepared via sol–gel method, while TiO2-SiO2 and ZrO2-SiO2 were synthesized via atomic layer deposition (ALD) thin film coating of TiO2 or ZrO2 on SiO2 particles substrate. In the sequential capture-reaction tests, the materials were first exposed to ca. 500 ppmv benzene …


Efficient Removal Of Lead Ions From Aqueous Media Using Sustainable Sources On Marine Algae, Hannah Namkoong, Erik Biehler, Gon Namkoong, Tarek M. Abdel-Fattah Jan 2022

Efficient Removal Of Lead Ions From Aqueous Media Using Sustainable Sources On Marine Algae, Hannah Namkoong, Erik Biehler, Gon Namkoong, Tarek M. Abdel-Fattah

Electrical & Computer Engineering Faculty Publications

The goal of this project is to explore a new method to efficiently remove Pb(II) ions from water by processing Undaria pinnatifida into immobilized beads using sodium alginate and calcium chloride. The resulting biosorbent was characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS). Using immobilized U. pinnatifida, we investigated the effect of various factors on Pb(II) ion removal efficiency such as temperature, pH, ionic strength, time, and underlying biosorption mechanisms. For Pb(II) ion biosorption studies, Pb(II) ion biosorption data were obtained and analyzed using Langmuir and Freundlich adsorption models. It …


Effects Of Microporous Structure On The Enzymatic Conversion Of Biomass Using A Multiscale Model, Saketh Merugu Jan 2021

Effects Of Microporous Structure On The Enzymatic Conversion Of Biomass Using A Multiscale Model, Saketh Merugu

Dissertations, Master's Theses and Master's Reports

The generation of biofuels from lignocellulosic biomass involves innovative process technology that is being investigated worldwide. Enzymatic hydrolysis is a major step in the contemporary process of the generation of biofuels. Guided by pore size distribution measured using NMR cryoporometry, we developed pore-enzyme diffusion and adsorption models at the particle level coupled with a kinetic model for cellulose, cellobiose, and glucose production at flask level. By simulating these models in MATLAB, COMSOL, and Polymath software packages, we investigate the effects of various biomass particle-related parameters (particle dimensions, porosity, enzyme accessibility) on the characteristic time of enzyme diffusion and adsorption and …


Removal Of Carbamazepine From Drinking Water, Paola Marrero-Rivera, Adam Johnson, Jordan Alex Gadberry, Juan Rodriguez, Thomas Krumpolc, Zach Wiese May 2018

Removal Of Carbamazepine From Drinking Water, Paola Marrero-Rivera, Adam Johnson, Jordan Alex Gadberry, Juan Rodriguez, Thomas Krumpolc, Zach Wiese

Chemical Engineering Undergraduate Honors Theses

Due to the increasing prevalence of prescription medication over the past few decades, pharmaceuticals have accumulated in various water sources. This has become a public health concern because many pharmaceuticals have limited research on the effects of chronic low-level exposure.One pharmaceutical of interest that has been detected in water sources is carbamazepine. Carbamazepine (CBZ) is a common pharmaceutical prescribed for the treatment of seizure disorders, neuropathic pain, and various psychological disorders. It’s mechanism of action is “sodium channel blocking,” which is the impairment of conduction of sodium ions in sodium channels. This, in effect, reduces nervous-system conductivity in key areas …


Bacterial Cellulose Nanocrystals: Production And Application, Isabela Reiniati Aug 2017

Bacterial Cellulose Nanocrystals: Production And Application, Isabela Reiniati

Electronic Thesis and Dissertation Repository

The aims of this study were to investigate the effect of culture conditions on the production of bacterial cellulose (BC) by Komagataeibacter xylinus (K. xylinus), to assess the feasibility of tailoring the surface properties of bacterial cellulose nanocrystals (BCNs) through the culture conditions, and to use the BCNs in an aqueous system for drug adsorption application. BC fibers production improved with increased agitation rates in a stirred tank bioreactor resulting in yields of 0.54 and 1.13 g of BC per litre at agitation rates of 500 rpm and 700 rpm, respectively. Separation and purification of bacterial cellulose were achieved …


Molecular Simulations Of Adsorption And Diffusion In Metal-Organic Frameworks (Mofs), Ruichang Xiong May 2010

Molecular Simulations Of Adsorption And Diffusion In Metal-Organic Frameworks (Mofs), Ruichang Xiong

Doctoral Dissertations

Metal-organic frameworks (MOFs) are a new class of nanoporous materials that have received great interest since they were first synthesized in the late 1990s. Practical applications of MOFs are continuously being discovered as a better understanding of the properties of materials adsorbed within the nanopores of MOFs emerges. One such potential application is as a component of an explosive-sensing system. Another potential application is for hydrogen storage.

This work is focused on tailoring MOFs to adsorb/desorb the explosive, RDX. Classical grand canonical Monte Carlo (GCMC) and molecular dynamic (MD) simulations have been performed to calculate adsorption isotherms and self-diffusivities of …


Microbial Cellulose Utilization: Fundamentals And Biotechnology, Lee R. Lynd, Paul J. Weimer, Willem H. Van Zyl, Isak S. Pretorius Sep 2002

Microbial Cellulose Utilization: Fundamentals And Biotechnology, Lee R. Lynd, Paul J. Weimer, Willem H. Van Zyl, Isak S. Pretorius

Dartmouth Scholarship

Fundamental features of microbial cellulose utilization are examined at successively higher levels of aggregation encompassing the structure and composition of cellulosic biomass, taxonomic diversity, cellulase enzyme systems, molecular biology of cellulase enzymes, physiology of cellulolytic microorganisms, ecological aspects of cellulase-degrading communities, and rate-limiting factors in nature. The methodological basis for studying microbial cellulose utilization is considered relative to quantification of cells and enzymes in the presence of solid substrates as well as apparatus and analysis for cellulose-grown continuous cultures. Quantitative description of cellulose hydrolysis is addressed with respect to adsorption of cellulase enzymes, rates of enzymatic hydrolysis, bioenergetics of microbial …