Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2004

Current density

Articles 1 - 5 of 5

Full-Text Articles in Chemical Engineering

Development Of First Principles Capacity Fade Model For Li-Ion Cells, P. Ramadass, Bala Haran, Parthasarathy M. Gomadam, Ralph E. White, Branko N. Popov Jan 2004

Development Of First Principles Capacity Fade Model For Li-Ion Cells, P. Ramadass, Bala Haran, Parthasarathy M. Gomadam, Ralph E. White, Branko N. Popov

Faculty Publications

A first principles-based model has been developed to simulate the capacity fade of Li-ion batteries. Incorporation of a continuous occurrence of the solvent reduction reaction during constant current and constant voltage (CC-CV) charging explains the capacity fade of the battery. The effect of parameters such as end of charge voltage and depth of discharge, the film resistance, the exchange current density, and the over voltage of the parasitic reaction on the capacity fade and battery performance were studied qualitatively. The parameters that were updated for every cycle as a result of the side reaction were state-of-charge of the electrode materials …


Development Of Novel Method For Preparation Of Pemfc Electrodes, Hansung Kim, Branko N. Popov Jan 2004

Development Of Novel Method For Preparation Of Pemfc Electrodes, Hansung Kim, Branko N. Popov

Faculty Publications

A method based on pulse electrodeposition technique was developed for preparation of membrane electrode assemblies (MEAs). In this approach, platinum is deposited directly on the surface of the carbon electrode. The method ensures most of the platinum to be in close contact with the membrane. Using this method it is possible to increase the Pt/C ratio up to 75 wt % near the surface of the electrode resulting in a 5 µm thick catalyst layer. The MEA prepared by pulse electrodeposition exhibits a current density of 0.33 A/cm2 at 0.8 V with platinum loading of 0.25 mg of Pt/cm …


Analytical Solution For The Impedance Of A Porous Electrode, Sheba Devan, Venkat R. Subramanian, Ralph E. White Jan 2004

Analytical Solution For The Impedance Of A Porous Electrode, Sheba Devan, Venkat R. Subramanian, Ralph E. White

Faculty Publications

A macrohomogeneous model is presented for a porous electrode that includes coupled potential and concentration gradients with linear kinetics. The equations are solved to obtain an analytical expression for the impedance of a porous electrode. Complex plane plots are presented that illustrate two well-defined arcs: a kinetic arc and a diffusion arc with their time constants far apart. The effects of parameters such as exchange current density, porosity, diffusion coefficient, thickness, and interfacial area on the impedance spectra are presented. The usefulness of the analytical solution in investigating the effect of solution phase diffusion is also presented.


Cycle Life Modeling Of Lithium-Ion Batteries, Gang Ning, Branko N. Popov Jan 2004

Cycle Life Modeling Of Lithium-Ion Batteries, Gang Ning, Branko N. Popov

Faculty Publications

A first-principles-based charge-discharge model was developed to simulate the capacity fade of Li-ion batteries. The model is based on the loss of active lithium ions due to solvent reduction reaction and on the rise of the anode film resistance. The effect of parameters such as exchange current density, depth of discharge (DOD), end of charge voltage, film resistance, and the overvoltage of parasitic reaction were studied quantitatively. The model controls the required DOD by controlling the discharge time and estimates the end of discharge voltages as a function of cycle number.


Parameter Estimates For A Pemfc Cathode, Qingzhi Guo, Vijay A. Sethuraman, Ralph E. White Jan 2004

Parameter Estimates For A Pemfc Cathode, Qingzhi Guo, Vijay A. Sethuraman, Ralph E. White

Faculty Publications

Five parameters of a model of a polymer electrolyte membrane fuel cell (PEMFC) cathode (the volume fraction of gas pores in the gas diffusion layer, the volume fraction of gas pores in the catalyst layer, the exchange current density of the oxygen reduction reaction, the effective ionic conductivity of the electrolyte, and the ratio of the effective diffusion coefficient of oxygen in a flooded spherical agglomerate particle to the square of that particle radius) were determined by least-squares fitting of experimental polarization curves. The values of parameters obtained in this work indicate that ionic conduction and gas-phase transport are two …