Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Chemical Engineering

Design And Analysis For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides, Xiaolong Wu Aug 2002

Design And Analysis For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides, Xiaolong Wu

UNLV Theses, Dissertations, Professional Papers, and Capstones

Fundamental issues related to the selection of a metallic fuel casting furnace design are presented and discussed including heating mechanisms, casting issues, crucible design, and issues related to the mass transport of americium. The process of evaluating all of these different criteria is undertaken to select a concept that would have the greatest chance of success for casting americium in a metallic fuel rod. Based on this evaluation process, a concept for the casting of metallic fuel pins containing high vapor pressure materials is selected and discussed. The important physics of this concept include mass transport of americium from the …


Modeling And Simulation Of The Chemical Etching Process In Niobium Cavities, Qin Xue Aug 2002

Modeling And Simulation Of The Chemical Etching Process In Niobium Cavities, Qin Xue

UNLV Theses, Dissertations, Professional Papers, and Capstones

Niobium Cavities are important parts of the integrated NC/SC high-power linear accelerator (linac) that can accelerate over 100 mA of protons to several GeV. Surface finish of the niobium cavity plays an important role of achieving the best performance of niobium cavity. The chemical etching techniques have been widely used.

Chemical etching of the inner surface of the cavity is achieved by circulating acid through it. The acid interacts with the surface and eliminates imperfections. During the etching process, a pipe with baffles is inserted within the cavity to direct the flow along the surfaces.

A 2-D, axisymmetric, steady state, …


Development Of A Model For Induction Heating, Randy Clarksean, Yitung Chen Jun 2002

Development Of A Model For Induction Heating, Randy Clarksean, Yitung Chen

Fuels Campaign (TRP)

There are two coupled equations that must be solved in order to determine the power deposition. The numerical solution of these equations is needed in order to apply a source term within the energy equations. These equations have previously solved in FIDAP. That implementation used modified versions of the momentum and energy equations to provide a mechanism for the solution of two coupled equations. Currently, we want to solve for the induction heating field in addition to the flow field and the energy equation. In order to do this, a mechanism has to be defined within FIDAP to solve these …


The Fission Properties Of Curium Separated From Spent Nuclear Fuel, William Culbreth, Elizabeth Bakker, Jason Viggato Apr 2002

The Fission Properties Of Curium Separated From Spent Nuclear Fuel, William Culbreth, Elizabeth Bakker, Jason Viggato

Separations Campaign (TRP)

Curium poses special problems in the chemical preparation of spent nuclear fuel for transmutation. Once separated from the other minor actinides, the seven curium isotopes in spent fuel can lead to nuclear fission with the subsequent release of a large amount of radiation. Several isotopes of curium also generate a significant amount of heat by radioactive decay. Sustained fission can be avoided by preventing the accumulation by more that a critical mass of curium. The heat generation of curium presents even more restriction on the mass of curium that can safely be contained in one location.

To analyze the nuclear …


Biological Reduction Of Perchlorate In Ion Exchange Regenerant Solutions Containing High Salinity And Ammonium Levels, Tina M. Gingras, Jacimaria R. Batista Jan 2002

Biological Reduction Of Perchlorate In Ion Exchange Regenerant Solutions Containing High Salinity And Ammonium Levels, Tina M. Gingras, Jacimaria R. Batista

Civil and Environmental Engineering and Construction Faculty Research

The most promising technologies to remove perchlorate from water are ion exchange and biological reduction. Although successful, ion exchange only separates perchlorate from water; it does not eliminate it from the environment. The waste streams from these systems contain the caustic or saline regenerant solutions used in the process as well as high levels of perchlorate. Biological reduction could be used to treat the regenerant waste solutions from the ion exchange process. A treatment scheme, combining ion exchange and biodegradation, is proposed to completely remove perchlorate from the environment. Perchlorate-laden resins generate brines containing salt concentrations up to 6% or …