Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2000

Electrodeposition

Articles 1 - 2 of 2

Full-Text Articles in Chemical Engineering

Development Of A New Electrodeposition Process For Plating Of Zn-Ni-X (X = Cd, P) Alloys: I. Corrosion Characteristics Of Zn-Ni-Cd Ternary Alloys, Anand Durairajan, Bala S. Haran, Ralph E. White, Branko N. Popov Jan 2000

Development Of A New Electrodeposition Process For Plating Of Zn-Ni-X (X = Cd, P) Alloys: I. Corrosion Characteristics Of Zn-Ni-Cd Ternary Alloys, Anand Durairajan, Bala S. Haran, Ralph E. White, Branko N. Popov

Faculty Publications

A new Zn-Ni-Cd plating process was developed which offers a unique way of controlling and optimizing the Ni and Cd contents in the final deposit. Zinc-nickel-cadmium alloy was deposited from a 0.5 M NiSO4 + 0.2 M ZnSO4 bath in the presence of 0.015 M CdSO4 and 1 g/L nonyl phenyl polyethylene oxide. Using this process a Zn-Ni-Cd ternary alloy, with a higher nickel content as compared to that obtained from conventional Zn-Ni baths, was synthesized. The Zn-Ni-Cd alloy coatings deposited from an electrolyte containing 0.015 M (0.3%) CdSO4 has a Zn to Ni ratio of …


Development Of A New Electrodeposition Process For Plating Of Zn-Ni-X (X = Cd, P) Alloys: Permeation Characteristics Of Zn-Ni-Cd Ternary Alloys, A. Durairajan, B. S. Haran, Ralph E. White, Branko N. Popov Jan 2000

Development Of A New Electrodeposition Process For Plating Of Zn-Ni-X (X = Cd, P) Alloys: Permeation Characteristics Of Zn-Ni-Cd Ternary Alloys, A. Durairajan, B. S. Haran, Ralph E. White, Branko N. Popov

Faculty Publications

It is shown that an electrodeposited Zn-Ni-Cd alloy coating produced from sulfate electrolyte inhibits the discharge of hydrogen on carbon steel. The newly developed ternary alloys have approximately ten times higher corrosion resistance when compared to a Zn-Ni alloy. Hydrogen permeation characteristics of Zn-Ni-Cd alloy coatings were studied and compared with those of a bare and a Zn-Ni alloy coated steel. The transfer coefficient, a, exchange current density, io, thickness dependent adsorption-absorption rate constant, k0, recombination rate constant, k3, surface hydrogen coverage, θH, were obtained by applying a mathematical model to experimental results. Alloys obtained from baths containing higher concentration …