Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Chemical Engineering

Synthesis Of Graphene Oxide Membranes And Their Behavior In Water And Isopropanol, Ashish Aher, Yuguang Cai, Mainak Majumder, Dibakar Bhattacharyya May 2017

Synthesis Of Graphene Oxide Membranes And Their Behavior In Water And Isopropanol, Ashish Aher, Yuguang Cai, Mainak Majumder, Dibakar Bhattacharyya

Chemical and Materials Engineering Faculty Publications

Graphene oxide (GO) membrane has been synthesized on commercial polysulfone ultrafiltration membranes (Pore size: 17 nm) using the drop casting method followed by baking at 90 C for 24 h. Baking resulted in the reduction of GO and removal of bulk water intercalated in the GO sheets. Deposited GO film showed high stability under shear stress variation. This work shows that water adsorption on the GO membrane determines its permeation performance. Despite the higher viscosity of isopropyl alcohol (IPA), its permeability was 7 times higher than water through the baked (“dry”) GO membranes, which were never contacted with water. However, …


Green Synthesis Nanocomposite Membranes, Dibakar Bhattacharyya, Vasile Smuleac, Rajender S. Varma, Subhas K. Sikdar Jun 2016

Green Synthesis Nanocomposite Membranes, Dibakar Bhattacharyya, Vasile Smuleac, Rajender S. Varma, Subhas K. Sikdar

Chemical and Materials Engineering Faculty Patents

A nanocomposite membrane includes a macroporous polymer membrane having a plurality of pores. A plurality of metal nanoparticles are synthesized and immobilized within those plurality of pores. The nanoparticles are reduced and capped with a green reducing and capping agent such as green tea extract.


Porous Nanocomposites With Integrated Internal Domains: Application To Separation Membranes, Wenle Li, John Y. Walz Mar 2014

Porous Nanocomposites With Integrated Internal Domains: Application To Separation Membranes, Wenle Li, John Y. Walz

Chemical and Materials Engineering Faculty Publications

Asymmetric membranes with layered structure have made significant achievements due to their balanced properties and multi-functionalities that come from a combination of multiple layers. However, issues such as delamination and substructure resistance are generated by the intrinsic layered structure. Here, we present a strategy to integrate the traditional layered structure into an asymmetric but continuous porous network. Through infiltrations of microparticles and nanoparticles to targeted regions, active domains are created inside the porous scaffold versus having them applied externally. The fabricated internal active domains are highly adjustable in terms of its dimensions, pore size, and materials. We demonstrate that it …


Incorporation Of Catalytic Dehydrogenation Into Fischer-Tropsch Synthesis To Significantly Reduce Carbon Dioxide Emissions, Gerald P. Huffman Nov 2012

Incorporation Of Catalytic Dehydrogenation Into Fischer-Tropsch Synthesis To Significantly Reduce Carbon Dioxide Emissions, Gerald P. Huffman

Chemical and Materials Engineering Faculty Patents

A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H2 level of coal-derived syngas for FTS. Additionally, the …


High Temperature Alloys Synthesis By Electro-Discharge Compaction, Kenji Okazaki Jan 1992

High Temperature Alloys Synthesis By Electro-Discharge Compaction, Kenji Okazaki

Chemical and Materials Engineering Faculty Patents

A method is provided for synthesizing high temperature alloys from elemental powders. The method includes the steps of placing the elemental powders to be processed in a die. A relatively high pressure is then applied to the powders. Substantially simultaneously, an electrical discharge is applied to the powders. The discharge is of relatively high voltage and current density to provide alloying. A product fabricated by the present method is also described and claimed.