Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Chemical Engineering

Arsenite Oxidation By Pure Cultures Of Thiomonas Arsenivorans Strain B6 In Bioreactor Systems, Aniruddha Dastidar Jan 2010

Arsenite Oxidation By Pure Cultures Of Thiomonas Arsenivorans Strain B6 In Bioreactor Systems, Aniruddha Dastidar

University of Kentucky Doctoral Dissertations

The removal of arsenic toxicity from water is accomplished by a preliminary preoxidative step transforming the most toxic form, arsenite (As (III)), to the least toxic form, arsenate (As (V)). The potential of As (III) oxidation to As (V) was initially investigated in batch reactors using the chemoautotrophic Thiomonas arsenivorans strain b6 under varying initial As (III) and cell concentrations and at optimal pH and temperature conditions (pH 6.0 and temperature 30°C). The strain b6 completely oxidized As (III) to As (V) during exponential growth phase for lower levels of As (III) concentrations (≤ 100 mg/L) but continued into stationary …


Characterization Of Poly(Methyl Methacrylate Based Nanocomposites Enhanced With Carbon Nanotubes, Andrew Jonathan Placido Jan 2010

Characterization Of Poly(Methyl Methacrylate Based Nanocomposites Enhanced With Carbon Nanotubes, Andrew Jonathan Placido

University of Kentucky Master's Theses

The viscoelastic relaxation dynamics of a series of poly(methyl methacrylate) [PMMA] based nanocomposites filled with carbon nanotubes have been studied using dynamic mechanical analysis and broadband dielectric spectroscopy. The networks were prepared using four methods: (i) melt mixing, (ii) solution processing, (iii) in-situ polymerization, and (iv) polymer grafting. Nanotube modifications included surface oxidation via acid exposure and surface functionalization for polymer grafting. The effect of variations in processing method and nanotube modification on glass transition temperature (Tg) and relaxation dynamics was investigated. The relaxation behavior of the nanocomposites was sensitive to processing method and nanotube functionalization. Nanotube loading …


Effect Of Fluorination On Partitioning Behavior And Bilayer Self Assembly, Vivian Aramide Ojogun Jan 2010

Effect Of Fluorination On Partitioning Behavior And Bilayer Self Assembly, Vivian Aramide Ojogun

University of Kentucky Doctoral Dissertations

Fluorinated systems are defined by unique properties that offer advantages in drug delivery, material synthesis and industrial applications. In comparison to their hydrocarbon counterparts, the design of fluorinated solutes for tailored applications is limited by the inability to predict the effect of fluorination on phase behavior. This work examines and interprets the influence of fluorination on the phase behavior of fluorinated solutes and surfactants, with emphasis on their impact on vesicle bilayers.

Thermodynamic partitioning of functionalized series of fluorinated and hydrocarbon nicotinate prodrugs fashioned to promote solubility in a fluorocarbon solvent (perfluorooctyl bromide; PFOB) is measured. Predictive approaches are also …


Targeted Polymeric Biomaterials For The Prevention Of Post Surgical Adhesions, John M. Medley Jan 2010

Targeted Polymeric Biomaterials For The Prevention Of Post Surgical Adhesions, John M. Medley

University of Kentucky Doctoral Dissertations

Despite recent advances in surgical technique and the development of numerous therapeutic agents, the formation post surgical adhesions (PSA) continues to cause complications for many patients. In this research, we have employed a rational system to develop a novel treatment to address this clinical need. Based on an understanding of the biochemical events that lead to PSA formation, a series of targeted polymeric biomaterials was designed to interrupt the fibrin gel matrix propagation and suppress PSA formation.

Using group transfer polymerization, a series of well controlled block copolymers of polyacrylic acid and poly(ethylene glycol-methacrylate) based materials was synthesized. Subsequent functionalization …


Remote Controlled Hydrogel Nanocomposites: Synthesis, Characterization, And Applications, Nitin S. Satarkar Jan 2010

Remote Controlled Hydrogel Nanocomposites: Synthesis, Characterization, And Applications, Nitin S. Satarkar

University of Kentucky Doctoral Dissertations

There is significant interest in the development of hydrogels and hydrogel nanocomposites for a variety of biomedical applications including drug delivery, sensors and actuators, and hyperthermia cancer treatment. The incorporation of nanoparticulates into a hydrogel matrix can result in unique material characteristics such as enhanced mechanical properties, swelling response, and capability of remote controlled (RC) actuation. In this dissertation, the development of hydrogel nanocomposites containing magnetic nanoparticles/carbon nanotubes, actuation with remote stimulus, and some of their applications are highlighted.

The primary hydrogel nanocomposite systems were synthesized by incorporation of magnetic nanoparticles into temperature responsive N-isopropylacrylamide (NIPAAm) matrices. Various nanocomposite properties …


Synthesis And Characterization Of Magnetic Hydrogel Nanocomposites For Cancer Therapy Applications, Samantha Ann Meenach Jan 2010

Synthesis And Characterization Of Magnetic Hydrogel Nanocomposites For Cancer Therapy Applications, Samantha Ann Meenach

University of Kentucky Doctoral Dissertations

Currently, cancer is the second leading cause of death in the United States. Conventional cancer treatment includes chemotherapy, radiation, and surgical resection, but unfortunately, all of these methods have significant drawbacks. Hyperthermia, the heating of cancerous tissues to between 41 and 45°C, has been shown to improve the efficacy of cancer therapy when used in conjunction with irradiation and/or chemotherapy. In this work, a novel method for remotely administering heat is presented. This method involves heating of tumor tissue using hydrogel nanocomposites containing magnetic nanoparticles which can be remotely heated upon exposure to an external alternating magnetic field (AMF). The …


Nanoscale Functionalization And Characterization Of Surfaces With Hydrogel Patterns And Biomolecules, Hariharasudhan Chirra Dinakar Jan 2010

Nanoscale Functionalization And Characterization Of Surfaces With Hydrogel Patterns And Biomolecules, Hariharasudhan Chirra Dinakar

University of Kentucky Doctoral Dissertations

The advent of numerous tools, ease of techniques, and concepts related to nanotechnology, in combination with functionalization via simple chemistry has made gold important for various biomedical applications. In this dissertation, the development and characterization of planar gold surfaces with responsive hydrogel patterns for rapid point of care sensing and the functionalization of gold nanoparticles for drug delivery are highlighted.

Biomedical micro- and nanoscale devices that are spatially functionalized with intelligent hydrogels are typically fabricated using conventional UV-lithography. Herein, precise 3-D hydrogel patterns made up of temperature responsive crosslinked poly(N-isopropylacrylamide) over gold were synthesized. The XY control of the hydrogel …