Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Chemical Engineering

Beneficial Reuse Of Industrial Co2 Emissions Using A Microalgae Photobioreactor: Waste Heat Utilization Assessment, Daniel T. Mohler, Michael H. Wilson, Zhen Fan, John G. Groppo, Mark Crocker Jul 2019

Beneficial Reuse Of Industrial Co2 Emissions Using A Microalgae Photobioreactor: Waste Heat Utilization Assessment, Daniel T. Mohler, Michael H. Wilson, Zhen Fan, John G. Groppo, Mark Crocker

Center for Applied Energy Research Faculty and Staff Publications

Microalgae are a potential means of recycling CO2 from industrial point sources. With this in mind, a novel photobioreactor (PBR) was designed and deployed at a coal-fired power plant. To ascertain the feasibility of using waste heat from the power plant to heat algae cultures during cold periods, two heat transfer models were constructed to quantify PBR cooling times. The first, which was based on tabulated data, material properties and the physical orientation of the PBR tubes, yielded a range of heat transfer coefficients of 19–64 W m−2 K−1 for the PBR at wind speeds of 1–10 …


Fischer–Tropsch: Product Selectivity–The Fingerprint Of Synthetic Fuels, Wilson D. Shafer, Muthu Kumaran Gnanamani, Uschi M. Graham, Jia Yang, Cornelius M. Masuku, Gary Jacobs, Burtron H. Davis Mar 2019

Fischer–Tropsch: Product Selectivity–The Fingerprint Of Synthetic Fuels, Wilson D. Shafer, Muthu Kumaran Gnanamani, Uschi M. Graham, Jia Yang, Cornelius M. Masuku, Gary Jacobs, Burtron H. Davis

Center for Applied Energy Research Faculty and Staff Publications

The bulk of the products that were synthesized from Fischer–Tropsch synthesis (FTS) is a wide range (C1–C70+) of hydrocarbons, primarily straight-chained paraffins. Additional hydrocarbon products, which can also be a majority, are linear olefins, specifically: 1-olefin, trans-2-olefin, and cis-2-olefin. Minor hydrocarbon products can include isomerized hydrocarbons, predominantly methyl-branched paraffin, cyclic hydrocarbons mainly derived from high-temperature FTS and internal olefins. Combined, these products provide 80–95% of the total products (excluding CO2) generated from syngas. A vast number of different oxygenated species, such as aldehydes, ketones, acids, and alcohols, are also embedded in this product range. …


Effect Of Pt Promotion On The Ni-Catalyzed Deoxygenation Of Tristearin To Fuel-Like Hydrocarbons, Ryan Loe, Kelsey Huff, Morgan Walli, Tonya Morgan, Dali Qian, Robert Pace, Yang Song, Mark Isaacs, Eduardo Santillan-Jimenez, Mark Crocker Feb 2019

Effect Of Pt Promotion On The Ni-Catalyzed Deoxygenation Of Tristearin To Fuel-Like Hydrocarbons, Ryan Loe, Kelsey Huff, Morgan Walli, Tonya Morgan, Dali Qian, Robert Pace, Yang Song, Mark Isaacs, Eduardo Santillan-Jimenez, Mark Crocker

Center for Applied Energy Research Faculty and Staff Publications

Pt represents an effective promoter of supported Ni catalysts in the transformation of tristearin to green diesel via decarbonylation/decarboxylation (deCOx), conversion increasing from 2% over 20% Ni/Al2O3 to 100% over 20% Ni-0.5% Pt/Al2O3 at 260 °C. Catalyst characterization reveals that the superior activity of Ni-Pt relative to Ni-only catalysts is not a result of Ni particle size effects or surface area differences, but rather stems from several other phenomena, including the improved reducibility of NiO when Pt is present. Indeed, the addition of a small amount of Pt to the supported Ni …


Continuous Catalytic Deoxygenation Of Waste Free Fatty Acid-Based Feeds To Fuel-Like Hydrocarbons Over A Supported Ni-Cu Catalyst, Ryan Loe, Yasmeen Lavoignat, Miranda Maier, Mohanad Abdallah, Tonya Morgan, Dali Qian, Robert Pace, Eduardo Santillan-Jimenez, Mark Crocker Jan 2019

Continuous Catalytic Deoxygenation Of Waste Free Fatty Acid-Based Feeds To Fuel-Like Hydrocarbons Over A Supported Ni-Cu Catalyst, Ryan Loe, Yasmeen Lavoignat, Miranda Maier, Mohanad Abdallah, Tonya Morgan, Dali Qian, Robert Pace, Eduardo Santillan-Jimenez, Mark Crocker

Center for Applied Energy Research Faculty and Staff Publications

While commercial hydrodeoxygenation (HDO) processes convert fats, oils, and grease (FOG) to fuel-like hydrocarbons, alternative processes based on decarboxylation/decarbonylation (deCOx) continue to attract interest. In this contribution, the activity of 20% Ni-5% Cu/Al2O3 in the deCOx of waste free fatty acid (FFA)-based feeds—including brown grease (BG) and an FFA feed obtained by steam stripping a biodiesel feedstock—was investigated, along with the structure-activity relationships responsible for Ni promotion by Cu and the structural evolution of catalysts during use and regeneration. In eight-hour experiments, near quantitative conversion of the aforementioned feeds to diesel-like hydrocarbons was achieved. …


Effect Of Crystallization Modes In Tips-Pentacene/Insulating Polymer Blends On The Gas Sensing Properties Of Organic Field-Effect Transistors, Jung Hun Lee, Yena Seo, Yeong Don Park, John E. Anthony, Do Hun Kwak, Jung Ah Lim, Sunglim Ko, Ho Won Jang, Kilwon Cho, Wi Hyoung Lee Jan 2019

Effect Of Crystallization Modes In Tips-Pentacene/Insulating Polymer Blends On The Gas Sensing Properties Of Organic Field-Effect Transistors, Jung Hun Lee, Yena Seo, Yeong Don Park, John E. Anthony, Do Hun Kwak, Jung Ah Lim, Sunglim Ko, Ho Won Jang, Kilwon Cho, Wi Hyoung Lee

Center for Applied Energy Research Faculty and Staff Publications

Blending organic semiconductors with insulating polymers has been known to be an effective way to overcome the disadvantages of single-component organic semiconductors for high-performance organic field-effect transistors (OFETs). We show that when a solution processable organic semiconductor (6,13-bis(triisopropylsilylethynyl)pentacene, TIPS-pentacene) is blended with an insulating polymer (PS), morphological and structural characteristics of the blend films could be significantly influenced by the processing conditions like the spin coating time. Although vertical phase-separated structures (TIPS-pentacene-top/PS-bottom) were formed on the substrate regardless of the spin coating time, the spin time governed the growth mode of the TIPS-pentacene molecules that phase-separated and crystallized on the …