Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Chemical Engineering

Development Of Pvdf Membrane Nanocomposites Via Various Functionalization Approaches For Environmental Applications, Douglas M. Davenport, Minghui Gui, Lindell E. Ormsbee, Dibakar Bhattacharyya Jan 2016

Development Of Pvdf Membrane Nanocomposites Via Various Functionalization Approaches For Environmental Applications, Douglas M. Davenport, Minghui Gui, Lindell E. Ormsbee, Dibakar Bhattacharyya

Chemical and Materials Engineering Faculty Publications

Membranes are finding wide applications in various fields spanning biological, water, and energy areas. Synthesis of membranes to provide tunable flux, metal sorption, and catalysis has been done through pore functionalization of microfiltration (MF) type membranes with responsive behavior. This methodology provides an opportunity to improve synthetic membrane performance via polymer fabrication and surface modification. By optimizing the polymer coagulation conditions in phase inversion fabrication, spongy polyvinylidene fluoride (PVDF) membranes with high porosity and large internal pore volume were created in lab and full scale. This robust membrane shows a promising mechanical strength as well as high capacity for loading …


Polyelectrolyte-Functionalized Nanofiber Mats Control The Collection And Inactivation Of Escherichia Coli, Katrina A. Rieger, Michael Porter, Jessica D. Schiffman Jan 2016

Polyelectrolyte-Functionalized Nanofiber Mats Control The Collection And Inactivation Of Escherichia Coli, Katrina A. Rieger, Michael Porter, Jessica D. Schiffman

Chemical Engineering Faculty Publication Series

Quantifying the effect that nanofiber mat chemistry and hydrophilicity have on microorganism collection and inactivation is critical in biomedical applications. In this study, the collection and inactivation of Escherichia coli K12 was examined using cellulose nanofiber mats that were surface-functionalized using three polyelectrolytes: poly (acrylic acid) (PAA), chitosan (CS), and polydiallyldimethylammonium chloride (pDADMAC). The polyelectrolyte functionalized nanofiber mats retained the cylindrical morphology and average fiber diameter (~0.84 µm) of the underlying cellulose nanofibers. X-ray photoelectron spectroscopy (XPS) and contact angle measurements confirmed the presence of polycations or polyanions on the surface of the nanofiber mats. Both the control cellulose and …