Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Brigham Young University

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 451

Full-Text Articles in Chemical Engineering

Ionic Conductivity, Li+ Transference Number, And Diffusion Coefficient Of A Solid-State Electrolyte Composite, Lizbeth Zurita May 2024

Ionic Conductivity, Li+ Transference Number, And Diffusion Coefficient Of A Solid-State Electrolyte Composite, Lizbeth Zurita

Reviews, Analyses, and Instructional Studies in Electrochemistry (RAISE)

The design of solid-state electrolyte (SSE) composites involves the fundamental study of transport properties, such as ionic conductivity. This transport property is influenced by the transport mechanisms of the charge species inside the composite, such as diffusion and migration. In this work, we perform the measurement of these three parameters through defined techniques. The resulting parameters were: ionic conductivity, the diffusion coefficient, and the Li+ transference number.


Model Of The Effect Of Voltage On Contact Angle In An Electrolytic Cell Reaction, Aaron Essilfie May 2024

Model Of The Effect Of Voltage On Contact Angle In An Electrolytic Cell Reaction, Aaron Essilfie

Reviews, Analyses, and Instructional Studies in Electrochemistry (RAISE)

This paper investigates the hypothesis that the contact angle at the meniscus of an electrode-electrolyte can be altered during a redox reaction through the coupled understanding of electrowetting and capillarity rise. Recent studies in electrowetting have focused on dielectric surfaces but research on contact angle at the electrode-electrolyte surface is lacking. The study employs a basic electrolytic cell. By applying principles of electrowetting and capillary rise the research aims to understand the relationship between applied voltage and contact angle, to advancements in electrochemistry and microfluidics.


An Overview Of How To Measure The Kinetic Properties Of An Anode Material For The Chlorine Evolution Reaction, Cameron Vann May 2024

An Overview Of How To Measure The Kinetic Properties Of An Anode Material For The Chlorine Evolution Reaction, Cameron Vann

Reviews, Analyses, and Instructional Studies in Electrochemistry (RAISE)

The process of generating chlorine gas using electrolysis in aqueous systems is well established. However, a new process requires chlorine to be generated at high temperatures using molten salt. This harsh environment requires a new study of anode materials for the chlorine evolution reaction. Anode materials can be compared by their kinetic parameters, the transfer coefficient α and the exchange current i0. The basic theory of these properties as they relate to the chlorine evolution reaction has been detailed and an analysis method for finding these effective parameters has been shown and demonstrated.


Model To Demonstrate Effects Of Mass Transfer And Applied Current In An Electrolytic Cell, George Ankrah May 2024

Model To Demonstrate Effects Of Mass Transfer And Applied Current In An Electrolytic Cell, George Ankrah

Reviews, Analyses, and Instructional Studies in Electrochemistry (RAISE)

This study investigates the relationship between applied current and resulting cell potential in an electrolytic system, considering the transport of electroactive species. By applying Michael Faraday's laws of electrolysis and the Nernst-Planck equation, the behavior of electroactive species in diffusion-controlled systems with and without stirring is modeled. The plots demonstrate how stirring enhances ion transport and establishes a stable Nernst diffusion layer, affecting the kinetics of electrochemical reactions. Understanding these dynamics is crucial for optimizing electrolysis processes.


Review Of Cyclic Voltammetry Measurements For Uranium In Flinak Molten Salt, Jackson Ivory May 2024

Review Of Cyclic Voltammetry Measurements For Uranium In Flinak Molten Salt, Jackson Ivory

Reviews, Analyses, and Instructional Studies in Electrochemistry (RAISE)

The electrochemical behavior of uranium FLiNaK molten salts is explored, focusing on cyclic voltammetry (CV) as a powerful tool for redox characterization and diffusion studies. Through a comprehensive review of recent research, the study highlights the significance of CV in understanding electrode kinetics, material compatibility, and process optimization in molten salt environments. The findings underscore the potential of FLiNaK molten salt reactors in advancing nuclear energy technologies, fuel processing, and waste management strategies. Collaborative interdisciplinary efforts are emphasized to address challenges and accelerate innovation in electrochemical methods for nuclear applications.


Xylan Fast Pyrolysis: An Experimental And Modelling Study Of Particle Changes And Volatiles Release, F Cerciello, E Freisewinkel, A Coppola, C Ontyd, D Tarlinski, Martin Schiemann, Osvalda Senneca, Pierro Salatino, C Allouis, Victor Scherer, Thomas H. Fletcher Jan 2024

Xylan Fast Pyrolysis: An Experimental And Modelling Study Of Particle Changes And Volatiles Release, F Cerciello, E Freisewinkel, A Coppola, C Ontyd, D Tarlinski, Martin Schiemann, Osvalda Senneca, Pierro Salatino, C Allouis, Victor Scherer, Thomas H. Fletcher

Faculty Publications

Biomass char particles produced by pyrolysis may have different morphologies, which has important implications on burning mode, conversion rate and boiler efficiency. These features are difficult to address due to the complexity of biomass structure and pyrolysis reaction models. The present work reports preliminary results on the morphological changes and volatile release that solid particles of Xylan experience upon fast heating in a Drop Tube Reactor (DTR) and in a Heated Strip Reactor (HSR) in a range of temperature between 1100 and 1573 K under inert atmosphere with heating rate in the order of 103 K/s. Two different Xylan …


Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia Dec 2023

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


Coarsening Dynamics Of Ternary Polymer Solutions With Mobility And Viscosity Contrasts, Jan Ulric Garcia, Douglas R. Tree, Alyssa Bagoyo, Tatsuhiro Iwama, Kris T. Delaney, Glenn H. Fredrickson Dec 2023

Coarsening Dynamics Of Ternary Polymer Solutions With Mobility And Viscosity Contrasts, Jan Ulric Garcia, Douglas R. Tree, Alyssa Bagoyo, Tatsuhiro Iwama, Kris T. Delaney, Glenn H. Fredrickson

Faculty Publications

Using phase-field simulations, we investigate the bulk coarsening dynamics of ternary polymer solutions undergoing a glass transition for two models of phase separation: diffusion only and with hydrodynamics. The glass transition is incorporated in both models by imposing mobility and viscosity contrasts between the polymer-rich and polymer-poor phases of the evolving microstructure. For microstructures composed of polymer-poor clusters in a polymer-rich matrix, the mobility and viscosity contrasts significantly hinder coarsening, effectively leading to structural arrest. For microstructures composed of polymer-rich clusters in a polymer-poor matrix, the mobility and viscosity contrasts do not impede domain growth; rather, they change the transient …


Nonsolvent-Induced Phase Separation Inside Liquid Droplets, Rami Alhasan, Tanner A. Wilcoxson, Dakota S. Banks, Sion Jung, Douglas R. Tree Jun 2023

Nonsolvent-Induced Phase Separation Inside Liquid Droplets, Rami Alhasan, Tanner A. Wilcoxson, Dakota S. Banks, Sion Jung, Douglas R. Tree

Faculty Publications

Nonsolvent-induced phase separation (NIPS) is a popular method for creating polymeric particles with internal microstructure, but many fundamental questions remain surrounding the kinetics of the complex coupled mass transfer and phase separation processes. In this work, we use simulations of a phase-field model to examine how (i) finite domain boundaries of a polymer droplet and (ii) solvent/nonsolvent miscibility affect the NIPS process. To isolate the effects of phase separation kinetics and solvent/nonsolvent mass transfer on the NIPS process, we study two different cases. First, we investigate droplet concentrations that originate inside the two-phase region, where phase separation kinetics alone governs …


Simulations Of Morphology Control Of Self-Assembled Amphiphilic Surfactants, Qinyu Zhu, Douglas R. Tree Mar 2023

Simulations Of Morphology Control Of Self-Assembled Amphiphilic Surfactants, Qinyu Zhu, Douglas R. Tree

Faculty Publications

One of the grand challenges of amphiphilic self-assembly is the design of ordered structures whose morphology or shape can be explicitly and dynamically controlled by adjusting the properties of the amphiphiles or their surroundings. Such a capacity would enable researchers to create synthetic systems with functionality that meets or exceeds biological cells, and provide a robust platform for a broad range of engineering applications such as artificial tissues, drug delivery, and separation membranes. Despite significant progress, important fundamental questions remain unanswered, due in part to the limited resolution and the restricted parameter spaces that are readily accessible in experiments. Computational …


Active Control Of Equilibrium, Near-Equilibrium, And Far-From-Equilibrium Colloidal Systems, Mark N. Mcdonald, Qinyu Zhu, Walter F. Paxton, Cameron K. Peterson, Douglas R. Tree Feb 2023

Active Control Of Equilibrium, Near-Equilibrium, And Far-From-Equilibrium Colloidal Systems, Mark N. Mcdonald, Qinyu Zhu, Walter F. Paxton, Cameron K. Peterson, Douglas R. Tree

Faculty Publications

The development of top-down active control over bottom-up colloidal assembly processes has the potential to produce materials, surfaces, and objects with applications in a wide range of fields spanning from computing to materials science to biomedical engineering. In this review, we summarize recent progress in the field using a taxonomy based on how active control is used to guide assembly. We find there are three distinct scenarios: (1) navigating kinetic pathways to reach a desirable equilibrium state, (2) the creation of a desirable metastable, kinetically trapped, or kinetically arrested state, and (3) the creation of a desirable far-from-equilibrium state through …


Steering Particles Via Micro-Actuation Of Chemical Gradients Using Model Predictive Control, Mark N. Mcdonald, Cameron K. Peterson, Douglas R. Tree Feb 2023

Steering Particles Via Micro-Actuation Of Chemical Gradients Using Model Predictive Control, Mark N. Mcdonald, Cameron K. Peterson, Douglas R. Tree

Faculty Publications

Biological systems rely on chemical gradients to direct motion through both chemotaxis and signaling, but synthetic approaches for doing the same are still relatively naïve. Consequently, we present a novel method for using chemical gradients to manipulate the position and velocity of colloidal particles in a microfluidic device. Specifically, we show that a set of spatially localized chemical reactions that are sufficiently controllable can be used to steer colloidal particles via diffusiophoresis along an arbitrary trajectory. To accomplish this, we develop a control method for steering colloidal particles with chemical gradients using nonlinear model predictive control with a model based …


Machine Learning With Gradient-Based Optimization Of Nuclear Waste Vitrification With Uncertainties And Constraints, Lagrande Gunnell, Kyle Manwaring, Xiaonan Lu, Jacob Reynolds, John Vienna, John Hedengren Nov 2022

Machine Learning With Gradient-Based Optimization Of Nuclear Waste Vitrification With Uncertainties And Constraints, Lagrande Gunnell, Kyle Manwaring, Xiaonan Lu, Jacob Reynolds, John Vienna, John Hedengren

Faculty Publications

Gekko is an optimization suite in Python that solves optimization problems involving mixed-integer, nonlinear, and differential equations. The purpose of this study is to integrate common Machine Learning (ML) algorithms such as Gaussian Process Regression (GPR), support vector regression (SVR), and artificial neural network (ANN) models into Gekko to solve data based optimization problems. Uncertainty quantification (UQ) is used alongside ML for better decision making. These methods include ensemble methods, model-specific methods, conformal predictions, and the delta method. An optimization problem involving nuclear waste vitrification is presented to demonstrate the benefit of ML in this field. ML models are compared …


Techno-Economic Sensitivity Analysis For Combined Design And Operation Of A Small Modular Reactor Hybrid Energy System, Daniel Hill, Adam Martin, Nathanael Martin-Nelson, Charles Granger, Kody Powell, John Hedengren Nov 2022

Techno-Economic Sensitivity Analysis For Combined Design And Operation Of A Small Modular Reactor Hybrid Energy System, Daniel Hill, Adam Martin, Nathanael Martin-Nelson, Charles Granger, Kody Powell, John Hedengren

Faculty Publications

With increasing grid-penetration of renewable energy resources and a rising need for carbon-free dispatchable power generation, nuclear-hybrid energy systems (NHES), consisting of small modular reactors, are an increasingly attractive option for maintaining grid stability. NHES can accomplish this with a minimal carbon footprint but there are significant uncertainties that are not fully understood. This work describes and demonstrates methods for analyzing the uncertainties of potential NHES designs, including uncertain design parameters and time series as well as variations in dispatch horizon length. The proposed methods are demonstrated on a sample system with 16 design parameters, 3 uncertain time series, and …


The Effect Of Soot Models In Oxy-Coal Combustion Simulations, Kamron Groves Brinkerhoff Mar 2022

The Effect Of Soot Models In Oxy-Coal Combustion Simulations, Kamron Groves Brinkerhoff

Theses and Dissertations

Soot in coal combustion simulations is often ignored due to its computational complexity, despite significant effects on flame temperature and radiation. In this research, a 40 kW oxy-coal combustion system is modeled using Large Eddy Simulations (LES) and a semi-empirical monodisperse coal soot model. Simulation results are compared to experimental measurements of temperature, species concentrations, and soot concentration. Cases where soot is modeled are compared with cases where soot is neglected to determine the accuracy benefits of modeling soot. The simulations were able to replicate experimental results within an acceptable level of error. Including soot in the simulations did not …


A Phase Field Model For Dynamic Simulations Of Reactive Blending Of Polymers, Mukul D. Tikekar, Kris T. Delaney, Michael C. Villet, Douglas R. Tree Jan 2022

A Phase Field Model For Dynamic Simulations Of Reactive Blending Of Polymers, Mukul D. Tikekar, Kris T. Delaney, Michael C. Villet, Douglas R. Tree

Faculty Publications

A facile way to generate compatibilized blends of immiscible polymers is through reactive blending of end-functionalized homopolymers. The reaction may be reversible or irreversible depending on the end-groups and is affected by the immiscibility and transport of the reactant homopolymers and the compatibilizing copolymer product. Here we describe a phase-field framework to model the combined dynamics of reaction kinetics, diffusion, and multi-component thermodynamics on the evolution of the microstructure and reaction rate in reactive blending. A density functional with no fitting parameters, which is obtained by adapting a framework of Uneyama and Doi and qualitatively agrees with self-consistent field theory, …


Semiflexible Oligomers Crystallize Via A Cooperative Phase Transition, Pierre Kawak, Dakota S. Banks, Douglas R. Tree Dec 2021

Semiflexible Oligomers Crystallize Via A Cooperative Phase Transition, Pierre Kawak, Dakota S. Banks, Douglas R. Tree

Faculty Publications

Semicrystalline polymers are ubiquitous, yet despite their fundamental and industrial importance, the theory of homogeneous nucleation from a melt remains a subject of debate. A key component of the controversy is that polymer crystallization is a non-equilibrium process, making it difficult to distinguish between effects that are purely kinetic and those that arise from the underlying thermodynamics. Due to computational cost constraints, simulations of polymer crystallization typically employ non-equilibrium molecular dynamics techniques with large degrees of undercooling that further exacerbate the coupling between thermodynamics and kinetics. In a departure from this approach, in this study, we isolate the near-equilibrium nucleation …


Large-Scale Reality Modeling Of A University Campus Using Combined Uav And Terrestrial Photogrammetry For Historical Preservation And Practical Use, Bryce Berrett, Cory Vernon, Haley Beckstrand, Madi Pollei, Kaleb Markert, Kevin Franke, John Hedengren Nov 2021

Large-Scale Reality Modeling Of A University Campus Using Combined Uav And Terrestrial Photogrammetry For Historical Preservation And Practical Use, Bryce Berrett, Cory Vernon, Haley Beckstrand, Madi Pollei, Kaleb Markert, Kevin Franke, John Hedengren

Faculty Publications

Unmanned aerial vehicles (UAV) enable detailed historical preservation of large-scale infrastructure and contribute to cultural heritage preservation, improved maintenance, public relations, and development planning. Aerial and terrestrial photo data coupled with high accuracy GPS create hyper-realistic mesh and texture models, high resolution point clouds, orthophotos, and digital elevation models (DEMs) that preserve a snapshot of history. A case study is presented of the development of a hyper-realistic 3D model that spans the complex 1.7 km2 area of the Brigham Young University campus in Provo, Utah, USA and includes over 75 significant structures. The model leverages photos obtained during the historic …


Dynamic Simulation Of A Novel Nuclear Hybrid Energy System With Large-Scale Hydrogen Storage In An Underground Salt Cavern, An Ho, Kasra Mohammadi, Matthew Memmott, John Hedengren, Kody Powell Sep 2021

Dynamic Simulation Of A Novel Nuclear Hybrid Energy System With Large-Scale Hydrogen Storage In An Underground Salt Cavern, An Ho, Kasra Mohammadi, Matthew Memmott, John Hedengren, Kody Powell

Faculty Publications

In this study, a nuclear hybrid energy system (NHES) with large-scale hydrogen storage integrated with a gas turbine cycle is proposed as a flexible system for load following. The proposed system consists of a nuclear reactor, a steam Rankine cycle, a hydrogen electrolyzer, a storage system for hydrogen in an underground salt cavern, and a Brayton cycle that uses hydrogen as fuel to generate additional electricity to meet peak demand. A dynamic mathematical model is developed for each subsystem of the NHES. To evaluate the potential benefits of the system, a one-year study is conducted, using scaled grid demand data …


Electroanalytical Measurements Of Oxide Ions In Molten Cacl2 On W Electrode, Devin Rappleye, Chao Zhang, Art Nelson, Scott Simpson, Michael Simpson Sep 2021

Electroanalytical Measurements Of Oxide Ions In Molten Cacl2 On W Electrode, Devin Rappleye, Chao Zhang, Art Nelson, Scott Simpson, Michael Simpson

Faculty Publications

The electrochemical interaction of oxide ions with tungsten electrodes in molten calcium chloride (CaCl2) was analyzed by combining electroanalytical techniques with X-ray photoelectron spectroscopy. During a cyclic voltammetry (CV) scan, the oxide ions appear to interact with the tungsten working electrode via a multi-step oxidation and reduction process. The overall redox peaks behave reversibly up to 750 mV/s. This electrochemical process enables the oxide ion concentration to be correlated to CV oxidation peaks. The resulting correlation agrees well (8.8% difference) with back titration measurements and can be used to monitor oxide content in the salt in real-time during …


Merging Of Horizontally And Vertically Separated Small-Scale Buoyant Flames, Thomas H. Fletcher, Denver Haycock, Seth Tollefsen, David Lignell Aug 2021

Merging Of Horizontally And Vertically Separated Small-Scale Buoyant Flames, Thomas H. Fletcher, Denver Haycock, Seth Tollefsen, David Lignell

Faculty Publications

The purpose of this study was to investigate the merging behavior of small-scale buoyant flames that might be representative of flames from a leaf in a shrub. Zirconia felt pads soaked in n-heptane were suspended on thin rods and spaced both horizontally and vertically. Time-dependent video images from flames from two-pad and three-pad configurations were analyzed to determine merging probability, combined flame characteristics (height, area, and width), and changes in burn time. Correlations of these combined flame characteristics were developed based on horizontal and vertical spacing between the pads. Merging probability correlated with an exponential function that was quadratic in …


Production Of Pure Vanadium: Industry Review And Feasibility Study Of Electron Beam Melt Refining Of V–Al Alloys, Devin Rappleye, Rob Haun Jul 2021

Production Of Pure Vanadium: Industry Review And Feasibility Study Of Electron Beam Melt Refining Of V–Al Alloys, Devin Rappleye, Rob Haun

Faculty Publications

The vanadium industry has experienced significant change over the last two decades with the emergence of vanadium redox flow batteries for grid-level energy storage, the growing demand for high-strength steel, and the selection of vanadium as a critical material in multiple countries. This review presents the status of the vanadium industry examining production processes and detailing facilities. The available information for each producer is presented including vanadium products and capacity. The production of pure vanadium is identified as a potential vulnerability for some nations where vanadium metal is needed in small, yet strategic, applications and globally only two producers of …


Application Of Compositional Data Analysis To Determine The Effects Of Heating Mode, Moisture Status And Plant Species On Pyrolysates, David R. Weise, Thomas H. Fletcher, Mohammad-Saeed Safdari, Elham Amini, Javier Palarea-Albaladejo Jun 2021

Application Of Compositional Data Analysis To Determine The Effects Of Heating Mode, Moisture Status And Plant Species On Pyrolysates, David R. Weise, Thomas H. Fletcher, Mohammad-Saeed Safdari, Elham Amini, Javier Palarea-Albaladejo

Faculty Publications

Pyrolysate gas mixtures are multivariate and relative in nature. Statistical techniques applied to these data generally ignore their relative nature. Published data for permanent gases (CO, CO2, H2, CH4) and tars produced by pyrolysing 15 wildland fuels were reanalysed using compositional data analysis techniques. Mass and mole fractions were compositionally equivalent. Plant species, moisture status and heating mode effects on compositional balances formed from subsets of pyrolysates were tested. Plant species affected the amount of phenol, primary and secondary/tertiary tars relative to permanent gases and relative amounts of single- and multi-ring compounds. Plant moisture status affected the amount of CO …


Pyrolysis Kinetics Of Wildland Vegetation Using Model-Fitting Methods, Ellie Amini, Mohammad-Saeed Safdari, Nathan Johnson Brigham, David R. Weise, Thomas H. Fletcher May 2021

Pyrolysis Kinetics Of Wildland Vegetation Using Model-Fitting Methods, Ellie Amini, Mohammad-Saeed Safdari, Nathan Johnson Brigham, David R. Weise, Thomas H. Fletcher

Faculty Publications

Slow-heating pyrolysis experiments of 14 plant species native to forests in the southern United States were conducted in a TGA to find the kinetic parameters for slow pyrolysis of all live and air-dried plant samples. Kinetic coefficients were determined from the data using model-fitting methods, resulting in single kinetic parameters for the entire pyrolysis process which can be used by wildland fire modelers. The model forms explored here are a simple one-step model and single and multiple reaction distributed activation energy (DAE) models. The mass loss and derivative mass loss data were fitted simultaneously at heating rates of 10, 20, …


Swarm-Based Design Of Proportional Integral And Derivative Controllers Using A Compromise Cost Function: An Arduino Temperature Laboratory Case Study, Paulo De Moura Oliveira, John Hedengren, Eduardo Solteiro Pires Nov 2020

Swarm-Based Design Of Proportional Integral And Derivative Controllers Using A Compromise Cost Function: An Arduino Temperature Laboratory Case Study, Paulo De Moura Oliveira, John Hedengren, Eduardo Solteiro Pires

Faculty Publications

Simple and easy to use methods are of great practical demand in the design of Proportional, Integral, and Derivative (PID) controllers. Controller design criteria are to achieve a good set-point tracking and disturbance rejection with minimal actuator variation. Achieving satisfactory trade-offs between these performance criteria is not easily accomplished with classical tuning methods. A particle swarm optimization technique is proposed to design PID controllers. The design method minimizes a compromise cost function based on both the integral absolute error and control signal total variation criteria. The proposed technique is tested on an Arduino-based Temperature Control Laboratory (TCLab) and compared with …


Using Reactive Dissipative Particle Dynamics To Understand Local Shape Manipulation Of Polymer Vesicles, Qinyu Zhu, Timothy R. Scott, Douglas R. Tree Oct 2020

Using Reactive Dissipative Particle Dynamics To Understand Local Shape Manipulation Of Polymer Vesicles, Qinyu Zhu, Timothy R. Scott, Douglas R. Tree

Faculty Publications

Biological cells have long been of interest to researchers due to their capacity to actively control their shape. Accordingly, there is significant interest in generating simplified synthetic protocells that can alter their shape based on an externally or internally generated stimulus. To date, most progress has been made towards controlling the global shape of a protocell, whereas less is known about generating a local shape change. Here, we seek to better understand the possible mechanisms for producing local morphological changes in a popular protocell system, the block copolymer vesicle. Accordingly, we have combined Dissipative Particle Dynamics (DPD) and the Split …


Mechanisms Of Asymmetric Membrane Formation In Nonsolvent-Induced Phase Separation, Jan Ulric Garcia, Tatsuhiro Iwama, Eva Y. Chan, Douglas R. Tree, Kris T. Delaney, Glenn H. Fredrickson Oct 2020

Mechanisms Of Asymmetric Membrane Formation In Nonsolvent-Induced Phase Separation, Jan Ulric Garcia, Tatsuhiro Iwama, Eva Y. Chan, Douglas R. Tree, Kris T. Delaney, Glenn H. Fredrickson

Faculty Publications

We report the first simulations of nonsolvent-induced phase separation (NIPS) that predict membrane microstructures with graded asymmetric pore size distribution. In NIPS, a polymer solution film is immersed in a nonsolvent bath, enriching the film in nonsolvent, and leading to phase separation that forms a solid polymer-rich membrane matrix and polymer-poor membrane pores. We demonstrate how mass-transfer-induced spinodal decomposition, thermal fluctuations, and glass-transition dynamics—implemented with mobility contrast between the polymer-rich and polymer-poor phases—are essential to the formation of asymmetric membrane microstructures. Specifically, we show that the competition between the propagation of the phase-separation and glass-transition fronts determines the degree of …


A Review Of Coal Heating Value Correlations With Application To Coal Char, Tar, And Other Fuels, Andrew P. Richards, Denver Haycock, Jacob F. Frandsen, Thomas H. Fletcher Aug 2020

A Review Of Coal Heating Value Correlations With Application To Coal Char, Tar, And Other Fuels, Andrew P. Richards, Denver Haycock, Jacob F. Frandsen, Thomas H. Fletcher

Faculty Publications

Accurately measuring a fuel’s heating value is one of the first steps in the classification of a new fuel. Heating values are widely used in coal combustion research and are becoming more useful in other fuel types as well. Many different empirical correlations to predict heating values based on primary organic (CHONS) elemental composition are found in the literature, many of which were originally created to predict heating values of parent coal, and some of which have been extended for biomass. However, no correlations exist for heating values of coal chars and tars. Thirteen literature heating value correlations (10 model …


Survey Of 8 Uav Set-Covering Algorithms For Terrain Photogrammetry, Joshua Hammond, Cory Vernon, Trent Okeson, Benjamin Barrett, Samuel Arce, Valerie Newell, Joseph Janson, Kevin Franke, John Hedengren Jul 2020

Survey Of 8 Uav Set-Covering Algorithms For Terrain Photogrammetry, Joshua Hammond, Cory Vernon, Trent Okeson, Benjamin Barrett, Samuel Arce, Valerie Newell, Joseph Janson, Kevin Franke, John Hedengren

Faculty Publications

Remote sensing with unmanned aerial vehicles (UAVs) facilitates photogrammetry for environmental and infrastructural monitoring. Models are created with less computational cost by reducing the number of photos required. Optimal camera locations for reducing the number of photos needed for structure-from-motion (SfM) are determined through eight mathematical set-covering algorithms as constrained by solve time. The algorithms examined are: traditional greedy, reverse greedy, carousel greedy (CG), linear programming, particle swarm optimization, simulated annealing, genetic, and ant colony optimization. Coverage and solve time are investigated for these algorithms. CG is the best method for choosing optimal camera locations as it balances number of …


Automated 3d Reconstruction Using Optimized View-Planning Algorithms For Iterative Development Of Structure-From-Motion Models, Samuel Arce, Cory Vernon, Joshua Hammond, Valerie Newell, Joseph Janson, Kevin Franke, John Hedengren Jul 2020

Automated 3d Reconstruction Using Optimized View-Planning Algorithms For Iterative Development Of Structure-From-Motion Models, Samuel Arce, Cory Vernon, Joshua Hammond, Valerie Newell, Joseph Janson, Kevin Franke, John Hedengren

Faculty Publications

Unsupervised machine learning algorithms (clustering, genetic, and principal component analysis) automate Unmanned Aerial Vehicle (UAV) missions as well as the creation and refinement of iterative 3D photogrammetric models with a next best view (NBV) approach. The novel approach uses Structure-from-Motion (SfM) to achieve convergence to a specified orthomosaic resolution by identifying edges in the point cloud and planning cameras that “view” the holes identified by edges without requiring an initial model. This iterative UAV photogrammetric method successfully runs in various Microsoft AirSim environments. Simulated ground sampling distance (GSD) of models reaches as low as 3.4 cm per pixel, and generally, …