Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Chemical Engineering

Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman Dec 2011

Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman

Mathematics Faculty Publications

Dewetting of pulsed-laser irradiated, thin (< 20 nm), optically reflective metallic bilayers on an optically transparent substrate with a reflective support layer is studied within the lubrication equations model. A steady-state bilayer film thickness (h) dependent temperature profile is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Large thermocapillary forces are observed along the plane of the liquid-liquid and liquid-gas interfaces due to this h-dependent temperature, which, in turn, is strongly influenced by the h-dependent laser light reflection and absorption. Consequently the dewetting is a result of the competition between thermocapillary and intermolecular forces. A linear analysis of the dewetting length scales established that the non-isothermal calculations better predict the experimental results as compared to the isothermal case within the bounding Hamaker coefficients. Subsequently, a computational non-linear dynamics study of the dewetting pathway was performed for Ag/Co and Co/Ag bilayer systems to predict the morphology evolution. We found that the systems evolve towards formation of different morphologies, including core-shell, embedded, or stacked nanostructure morphologies.


Starting Radial Subdiffusion From A Central Point Through A Diverging Medium (A Sphere): Heat-Balance Integral Method, Jordan Hristov Dec 2011

Starting Radial Subdiffusion From A Central Point Through A Diverging Medium (A Sphere): Heat-Balance Integral Method, Jordan Hristov

Jordan Hristov

The work presents an integral solution of the time-fractional subdiffusion equation as alternative approach to those employing hypergeometric functions. The integral solution suggests a preliminary defined profile with unknown coefficients and the concept of penetration (boundary layer) well known from the heat diffusion and hydrodynamics. The profile satisfies the boundary conditions imposed at the boundary of the boundary layer that allows its coefficients to be expressed through the boundary layer depth as unique parameter describing the profile. The technique is demonstrated by a solution of a time fractional radial equation concerning anomalous diffusion from a central point source in a …


Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman Dec 2011

Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman

Mikhail Khenner

Dewetting of pulsed-laser irradiated, thin (< 20 nm), optically reflective metallic bilayers on an optically transparent substrate with a reflective support layer is studied within the lubrication equations model. A steady-state bilayer film thickness (h) dependent temperature profile is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Large thermocapillary forces are observed along the plane of the liquid-liquid and liquid-gas interfaces due to this h-dependent temperature, which, in turn, is strongly influenced by the h-dependent laser light reflection and absorption. Consequently the dewetting is a result of the competition between thermocapillary and intermolecular forces. A linear analysis of the dewetting length scales established that the non-isothermal calculations better predict the experimental results as compared to the isothermal case within the bounding Hamaker coefficients. Subsequently, a computational non-linear dynamics study of the dewetting pathway was performed for Ag/Co and Co/Ag bilayer systems to predict the morphology evolution. We found that the systems evolve towards formation of different morphologies, including core-shell, embedded, or stacked nanostructure morphologies.


Effects Of Internals Configurations On Heat Transfer And Hydrodynamics In Bubble Columns - With And Without Solid Particles, Anil Kumar Jhawar Dec 2011

Effects Of Internals Configurations On Heat Transfer And Hydrodynamics In Bubble Columns - With And Without Solid Particles, Anil Kumar Jhawar

Electronic Thesis and Dissertation Repository

Internals of different types are required in a number of industrial applications of bubble columns to achieve the desired mixing or to remove the heat of reaction to maintain desired temperature and isothermal conditions of operation. Some of these applications include Fischer-Tropsch synthesis, methanol synthesis, and production of dimethyl ether (DME). The presence of internals however can alter the column hydrodynamics and mixing patterns which could influence reactor performance. A fast response probe capable of capturing bubble dynamics, as well as detecting flow direction is used to study the effect of internals on local heat transfer and column hydrodynamics in …


Modeling Chemical Degradation And Proton Transport In Perfluorosulfonic Acid Ionomers, Milan Kumar Dec 2011

Modeling Chemical Degradation And Proton Transport In Perfluorosulfonic Acid Ionomers, Milan Kumar

Doctoral Dissertations

The ionomer-membrane interface in a membrane electrode assembly connects the catalyst and membrane and allows hydrated protons to move between the catalyst and membrane. The continuous operation of the polymer membrane electrolyte fuel cell at high temperature and/or in frequent freeze/thaw cycles leads to membrane degradation and delamination of the interface, which lower the proton conductivity. In this dissertation, we modeled the chemical degradation and proton conductivity of perfluorosulfonic acid (PFSA) ionomers by ab initio calculations and macroscopic modeling. All ab initio calculations were performed using Gaussian 03 suites of program by employing B3LYP/6-311++G** method/basis set. The macroscopic modeling involves …


Transient Flow Of A Generalized Second Grade Fluid Due To A Constant Surface Shear Stress: An Approximate Integral-Balance Solution, Jordan Hristov Dec 2011

Transient Flow Of A Generalized Second Grade Fluid Due To A Constant Surface Shear Stress: An Approximate Integral-Balance Solution, Jordan Hristov

Jordan Hristov

Integral balance solution to start-up problem of a second grade viscoelastic fluid caused by a constant surface stress at the surface has been developed by an entire-domain parabolic profile with an unspecified exponent. The closed form solution explicitly defines two dimensionless similarity variables ξ = y ν t and 2 D0 p t= χ = ν β , responsible for the viscous and the elastic responses of the fluid to the step jump at the boundary. Numerical simulations demonstrating the effect of the various operating parameter and fluid properties on the developed flow filed, as well comparison with the existing …


Dynamics Of Polymeric Solutions In Complex Kinematics Bulk And Free Surface Flows: Multiscale/Continuum Simulations And Experimental Studies, Arash Abedijaberi Aug 2011

Dynamics Of Polymeric Solutions In Complex Kinematics Bulk And Free Surface Flows: Multiscale/Continuum Simulations And Experimental Studies, Arash Abedijaberi

Doctoral Dissertations

While rheological and microstructural complexities have posed tremendous challenges to researchers in developing first principles models and simulation techniques that can accurately and robustly predict the dynamical behaviour of polymeric flows, the past two decades have offered several significant advances towards accomplishing this goal. These accomplishments include: (1). Stable and accurate formulation of continuum-level viscoelastic constitutive models and their efficient implementation using operator splitting methods to explore steady and transient flows in complex geometries, (2). Prediction of rheology of polymer solutions and melts based on micromechanical models as well as highly parallel self-consistent multiscale simulations of non-homogeneous flows. The main …


Investigation Of Hydrodynamic Scaling Relationships In Shallow Spouted Beds, Irma Deytia Lima Rojas Aug 2011

Investigation Of Hydrodynamic Scaling Relationships In Shallow Spouted Beds, Irma Deytia Lima Rojas

Doctoral Dissertations

Important global hydrodynamic relationships for shallow spouted beds of high-density particles were characterized in terms of three features: minimum spouting velocity, overall bed pressure drop at minimum spouting velocity; and fountain height. Spouted bed literature is sparse for shallow beds (static particle depth to bed diameter ≤ 1) and beds with heavy particles (density > 3000 kg/m3). Correlations for such beds were developed here by varying column diameter, static bed height, particle diameter, particle density, gas density and gas flow in an ambient temperature and pressure bed.

The degree of correlation between each of the observed hydrodynamic features and …


Traffic Safety: Modeling, Analysis And Visualization, Puneet Lakhanpal Aug 2011

Traffic Safety: Modeling, Analysis And Visualization, Puneet Lakhanpal

UNLV Theses, Dissertations, Professional Papers, and Capstones

Traffic Safety has always been one of the major issues of concern in United States. Every year, stringent efforts are made by the national agencies and safety offices to uplift the traffic safety standards and build systems which can guide them in policy making, reducing crashes and routing the financial resources in an optimal direction. This thesis studies the traffic safety from three different angles: modeling, analysis and visualization. In the beginning, these three components are explored in the domain of Injury Severity. Later on, the focus is shifted towards the Traffic Safety related to Safety Belts. Factors and models …


Vuv Absorption Cross Section Of Benzene, Relevance For Titan’S Atmosphere, F-J. Capalbo, Y. Bénilan, N. Fray, M. Schwell, Et. Es-Sebbar, N. Champion, T. Koskinen, R. Yelle Jul 2011

Vuv Absorption Cross Section Of Benzene, Relevance For Titan’S Atmosphere, F-J. Capalbo, Y. Bénilan, N. Fray, M. Schwell, Et. Es-Sebbar, N. Champion, T. Koskinen, R. Yelle

Dr. Et-touhami Es-sebbar

Saturn's largest satellite, Titan, is the only one in the Solar System known to have a thick N2/CH4, planet like atmosphere. The dissociation of these principal components and the recombination of the products make this atmosphere to be rich in organic compounds of high interest for astrobiology. Solar and stellar occultations observed by the Ultraviolet Imaging Spectrograph (UVIS) on board the Cassini spacecraft can be used to characterize the composition of Titan’s upper atmosphere (400 – 1400 km). The results depend strongly on the knowledge of the molecular absorption cross sections of the atmospheric constituents (Ferradaz et al. 2009). This …


Cavitation Modelling Based On Eulerian-Eulerian Multiphase Flow, Rachid Bannari Ph.D Jun 2011

Cavitation Modelling Based On Eulerian-Eulerian Multiphase Flow, Rachid Bannari Ph.D

Rachid BANNARI

Cavitation is a physical phenomenon encountered in the normal operation of hydraulic turbines. It can lead to loss in efficiency, vibrations and blade erosion damages. It is crucial to accurately predict cavitation development and evolution to make confident predictive results for hydraulic turbines in a cavitating regime. The cavity closure is a critical region that is characterized by its unsteady and unstable behavior. In this region, liquid and vapor are highly mixed and experienced a strong interaction between the cavity and the outer flow. Most of the published work is based on the mixture multiphase model. An important limitation of …


Transferts De Chaleur Dans Un Réacteur Thermochimique Solaire Muni D’Un Récepteur Volumique Poreux, Hernando Romero Paredes Rubio May 2011

Transferts De Chaleur Dans Un Réacteur Thermochimique Solaire Muni D’Un Récepteur Volumique Poreux, Hernando Romero Paredes Rubio

Hernando Romero Paredes Rubio

Un réacteur thermochimique solaire de 1 kW muni d’une structure céramique poreuse en céramique est modélisé pour simuler les transferts thermiques a l’intérieur du récepteur volumétrique. Le modèle développé a été utilisé pour prévoir le comportement thermique du réacteur en fonction des différentes conditions opératoires qui concernent le débit de gaz inerte, le flux solaire incident, la porosité, la longueur du récepteur, et la prise en compte de réactions chimiques. Les résultats montrent que la température maximale est de 1850K pour une concentration solaire de 1000 soleils. La température diminue de manière significative lorsque le débit de gaz augmente. Un …


Characterization Of Continuous Vacuum Ultraviolet Lamps-Implication On The Study Of Methane Photolysis At Lyman Alpha (121.6 Nm), M-C. Gazeau, Y. Benilan, Et. Es-Sebbar, A. Jolly, E. Arzoumanian, N. Fray, H. Cottin Apr 2011

Characterization Of Continuous Vacuum Ultraviolet Lamps-Implication On The Study Of Methane Photolysis At Lyman Alpha (121.6 Nm), M-C. Gazeau, Y. Benilan, Et. Es-Sebbar, A. Jolly, E. Arzoumanian, N. Fray, H. Cottin

Dr. Et-touhami Es-sebbar

Low-temperature hydrogen plasmas are widely used as continuous vacuum ultraviolet irradiation sources in photochemical studies and, in particular, in laboratory simulations of planetary atmospheres. One of the most challenging objectives of such experiments is to retrieve accurate quantitative laboratory data allowing a reliable comparison with theoretical and/or observational ones. This task can only be achieved when the irradiation source delivers a well characterised radiation in terms of flux and wavelength dependency. As an example, we will present a study, developed in the frame of a program dedicated to simulations of Titan’s atmosphere, on methane photolysis at Lyman alpha (121.6 nm). …


Formation Of Hcn And Nh3 As Primary Compounds Of Titan’S Atmosphere Simulations Using N2-Ch4 Afterglow Plasma’’, M-C. Gazeau, Y. Bénilan, E. Arzoumanian, Et. Es-Sebbar, A. Jolly, C.D. Pintassilgo Apr 2011

Formation Of Hcn And Nh3 As Primary Compounds Of Titan’S Atmosphere Simulations Using N2-Ch4 Afterglow Plasma’’, M-C. Gazeau, Y. Bénilan, E. Arzoumanian, Et. Es-Sebbar, A. Jolly, C.D. Pintassilgo

Dr. Et-touhami Es-sebbar

No abstract provided.


Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine Jan 2011

Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine

Mathematics Faculty Publications

The linear dispersion relation for longwave surface perturbations, as derived by Levine et al. Phys. Rev. B 75, 205312 (2007) is extended to include a smooth surface energy anisotropy function with a variable anisotropy strength (from weak to strong, such that sharp corners and slightly curved facets occur on the corresponding Wulff shape). Through detailed parametric studies it is shown that a combination of a wetting interaction and strong anisotropy, and even a wetting interaction alone results in complicated linear stability characteristics of strained and unstrained films.


Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu Tekalign, Margo Levine Jan 2011

Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu Tekalign, Margo Levine

Mathematics Faculty Publications

The linear dispersion relation for longwave surface perturbations, as derived by Levine et al. Phys. Rev. B 75, 205312 (2007) is extended to include a smooth surface energy anisotropy function with a variable anisotropy strength (from weak to strong, such that sharp corners and slightly curved facets occur on the corresponding Wulff shape). Through detailed parametric studies it is shown that a combination of a wetting interaction and strong anisotropy, and even a wetting interaction alone results in complicated linear stability characteristics of strained and unstrained films.


Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner Jan 2011

Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner

Mathematics Faculty Publications

Presents physics behind dewetting of thin liquid films and mathematical/computational modeling tools (Educational/Research presentation for senior physics majors).


Hydrodynamic Characteristics Of A Novel Circulating Fluidized Bed Steam Reformer Operating In The Fast Fluidization Regime, Moataz Bellah M. Mousa, Seif-Eddeen K. Fateen, Essam A. Ibrahim Jan 2011

Hydrodynamic Characteristics Of A Novel Circulating Fluidized Bed Steam Reformer Operating In The Fast Fluidization Regime, Moataz Bellah M. Mousa, Seif-Eddeen K. Fateen, Essam A. Ibrahim

Seif-Eddeen K Fateen

Circulating Fluidized Bed Steam Reformers (CFBSRs) represent an important alternative for the production of syngas for the Fisher-Tropsch (FT) process and for hydrogen production. Most research regarding this novel CFBSRs did not consider its hydrodynamic characteristics. In this work, the riser Computational Fluid Dynamics (CFD) simulations were investigated using two phase Eulerian-Eulerian approach coupled with kinetic theory of granular flow with k-epsilon model to describe the turbulence of each phase. The model equations were solved via the commercial CFD package FLUENT, which uses the finite volume numerical approach. Cold flow simulations were carried out under the fast fluidization regime and …


Behavior Of Hydrophobic Ionic Liquids As Liquid Membranes On Phenol Removal: Experimental Study And Optimization, Yee Sern Ng, Jayakumar Natesan Subramaniam, Mohd Ali Hashim Jan 2011

Behavior Of Hydrophobic Ionic Liquids As Liquid Membranes On Phenol Removal: Experimental Study And Optimization, Yee Sern Ng, Jayakumar Natesan Subramaniam, Mohd Ali Hashim

Ng Yee-Sern

Room temperature ionic liquids show potential as an alternative to conventional organic membrane solvents mainly due to their properties of low vapor pressure, low volatility and they are often stable. In the present work, the technical feasibilities of room temperature ionic liquids as bulk liquid membranes for phenol removal were investigated experimentally. Three ionic liquids with high hydrophobicity were used and their phenol removal efficiency, membrane stability and membrane loss were studied. Besides that, the effects of several parameters, namely feed phase pH, feed concentration, NaOH concentration and stirring speeds on the performance of best ionic liquid membrane were also …


Termodynamika Procesowa (Dla Me Aparatura Procesowa) Ćw., Wojciech M. Budzianowski Jan 2011

Termodynamika Procesowa (Dla Me Aparatura Procesowa) Ćw., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


The Analysis Of Heat Transfer In A Gas-Gas Heat Exchanger Operated Under A Heat-Recirculating Mode, Mariusz Salaniec, Wojciech M. Budzianowski Jan 2011

The Analysis Of Heat Transfer In A Gas-Gas Heat Exchanger Operated Under A Heat-Recirculating Mode, Mariusz Salaniec, Wojciech M. Budzianowski

Wojciech Budzianowski

The present paper presents the analysis of heat transfer in a gas-gas heat exchanger operated in a heat-recirculating mode.


An Overview Of Technologies For Upgrading Of Biogas To Biomethane, Wojciech M. Budzianowski Jan 2011

An Overview Of Technologies For Upgrading Of Biogas To Biomethane, Wojciech M. Budzianowski

Wojciech Budzianowski

The present contribution presents an overview of technologies available for upgrading of biogas to biomethane. Technologies under study include pressure swing adsorption (PSA), high-pressure water wash (HPWW), reactive absorption (RA), physical absorption (PA), membrane separation (MS) and cryogenic separation (CS).


Influence Of Energy Policy On The Rate Of Implementation Of Biogas Power Plants In Germany During The 2001-2010 Decade, Izabela Chasiak, Wojciech M. Budzianowski Jan 2011

Influence Of Energy Policy On The Rate Of Implementation Of Biogas Power Plants In Germany During The 2001-2010 Decade, Izabela Chasiak, Wojciech M. Budzianowski

Wojciech Budzianowski

The current article describes energy policy tools, which caused intensive development of biogas-based power generation in Germany during the 2001-2010 decade. The German system of financial support to biogas power plants is presented in details. It is shown that in Germany, i.e. in a country characterised by similar climate and potentials to renewable energy to Poland, biogas power plants cover 10,7% of electricity demands in 2010, while all renewable energy sources cover only 5,4% of electricity demands. It is emphasised that under favourable Polish energy policy, the development of biogas energy can be very rapid.


Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine Jan 2011

Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine

Mikhail Khenner

The linear dispersion relation for longwave surface perturbations, as derived by Levine et al. Phys. Rev. B 75, 205312 (2007) is extended to include a smooth surface energy anisotropy function with a variable anisotropy strength (from weak to strong, such that sharp corners and slightly curved facets occur on the corresponding Wulff shape). Through detailed parametric studies it is shown that a combination of a wetting interaction and strong anisotropy, and even a wetting interaction alone results in complicated linear stability characteristics of strained and unstrained films.


Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner Jan 2011

Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner

Mikhail Khenner

Presents physics behind dewetting of thin liquid films and mathematical/computational modeling tools (Educational/Research presentation for senior physics majors).